Termokings.ru

Домашний Мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварочные флюсы классификация и особенности

Сварочные флюсы классификация и особенности

При электродуговой или газовой сварке в условиях высоких температур значительно увеличивается химическая активность обрабатываемой зоны. Металл усиленно окисляется под воздействием атмосферного воздуха, в результате шлаки и окислы попадают в него, снижая интенсивность металлургических процессов и в итоге ухудшая качество сварного шва. Для предотвращения этих процессов необходима защитная газовая или жидкая среда, которая изолирует зону сварки. Ее и создают флюсы — неметаллические композитные порошковые компоненты.

Таким образом, назначение флюсов при сварке — изоляция сварочной ванны от атмосферного воздуха, защита наплавляемого металла от интенсивных окислительных процессов, стабильное горение сварочной дуги и получение сварного шва необходимого качества.

Основность флюса

Долгое время понятием «основность» пользовались для описания химико-металлургической природы сварочных флюсов. Однако, существовавшие формулы давали весьма различные результаты. Для расчета основности флюсов, представленных в данной брошюре, ЭСАБ использует следующую формулу:

Все составляющие подставляются в весовых процентах.

«В»- определяет соотношение между основными и кислыми окислами, входящими во флюс.

MnO и FeO считаются «полуосновными», а AL2O3, TiO2 и ZrO2 — «полукислыми». CaF2 считается основным составляющим, т.к. при сварке он частично переходит в СаО, что является причиной снижения активности SiO2 в шлаке по реакции:

В соответствии с расчетами по формуле основности все флюсы по их химико-металлургическим свойствам можно разделить на группы, имеющие следующий температурный интервал плавления:

Качество шва зависит от:

  • вида и полярности тока, напряжения;
  • диаметра и вылета проволоки;
  • вида и плотности флюса;
  • положения материала и электрода;
  • скорости процесса.

Согласно ГОСТ 2246-70 для работы со сталью используется стальная проволока с диаметром 0,3-12 мм.

Проволока поставляется в кассетах и бухтах. Если она долго храниться, перед применением требуется промывка керосином или бензином, чтобы убрать ржавчину. Если выполняются работы с алюминием, требуется проволока по ГОСТ 7871-75, при сварке меди — по ГОСТ 16130-72.

Флюс выбирается в зависимости от требуемых характеристик шлака и защитных газов, уровня устойчивости к образованию трещин.

Режимы сварки под флюсом

Режимы сварки под флюсом выглядят примерно так. Флюс осаждается на место для сварки. Пока флюс холодный он не является проводником электричества, и дуга зажигается либо касанием электрода о рабочую поверхность, либо путем размещения металлической стружки между электродом и рабочей поверхностью до включения сварочного тока, либо с помощью высокочастотного узла. Во всех случаях сварочная дуга возникает под слоем флюса. Флюс – это изолятор, но как только он начинает плавится от тепла дуги, он становится токопроводящим и, следовательно, поддерживает ток между электродом и рабочей плоскостью. В верхней части флюс, при контакте с атмосферой, остается твердым и гранулированным, то есть без изменений, и может быть повторно использован.

Электрод с заданной скоростью непрерывно подают в место сварки. В полуавтоматических сварочных аппаратах сварочная головка перемещается вручную вдоль шва. При автоматической сварке специальное устройство перемещает сварочную головку вдоль неподвижной рабочей поверхности, либо рабочая поверхность перемещается или вращается под стационарной сварочной головкой.

Читать еще:  Сварочный аппарат инверторный Ресанта САИ-190T LUX

Длина дуги поддерживается постоянной автоматически: если по определенными причинам длина дуги уменьшается, напряжение дуги будет возрастать, ток дуги и, следовательно, скорость сварки будет

увеличиваться в результате чего дуга удлиняется. Обратный процесс происходит, если длина дуги увеличивается.

Может быть использована крепежная пластина из стали или меди для контроля проникновения и поддерживания большого количества расплавленного металла, связанного с процессом.

6 Требования к сварочным материалам

Покрытие электрода должно равномерно и концентрично покрывать стержень по всей длине для того, чтобы исключить его асимметричное расплавление при сварке. Покрытие электрода не должно иметь неровностей, трещин и других дефектов поверхности, которые могли бы неблагоприятно влиять на сварочный процесс. Покрытие должно иметь прочное сцепление со стержнем и не отслаиваться при надлежащей транспортировке и использовании.

Зажимной конец покрытого электрода должен быть свободен от материала покрытия на длине не менее 15мм.

Примечание — Конец электрода, предназначенный для возбуждения дуги, может быть покрыт материалом, который облегчает возбуждение дуги.

Марки флюсов для сварки электродуговым способом

Флюсы для сварки металлов электродуговым способом классифицируют по трем признакам:

  • По химическому составу.
  • По степени активности компонентов флюса.
  • По типу соединяемых во время сварки металлов.

По первому признаку – химическому составу – флюсы разделяются на солевые, оксидные и смешанные (солеоксидные) разновидности. В основе солевых флюсов находятся фториды и хлориды железа и некоторая часть оксидов легирующих материалов. В основе оксидных флюсов находятся оксиды марганца, кремния, титана и прочих материалов. Смешанные материалы содержат до 30 процентов солей (фторидов и хлоридов) и не менее 15 процентов оксидов кремния.

По степени активности компонентов флюсы разделяют на четыре группы: пассивные, малоактивные, активные и высокоактивные. Причем активность компонентов указывают в спецификации к флюсу и измеряют по особой шкале: от 0 (пассивные) до 1 (высокоактивные).

По типу стыкуемых металлов флюсы делятся на четыре группы:

Составы для низкоуглеродистых сталей. К этой категории принадлежит любой флюс для сварки стали конструкционного типа (с содержанием легирующий присадок не более одного процента от общей массы). Причем основу состава флюса формируют из оксида кремния, к которому подмешивают оксид марганца. Массовая часть последнего компонента (оксида марганца) зависит от содержания марганца в сварочной проволоке. То есть, чем больше марганца в присадочном материала – тем меньше содержание его оксида во флюсе. Химическая активность компонентов флюса, в данном случае, высокая (до 0,9).

Составы для низколегированных сталей. Составы для сталей с содержанием легирующих компонентов до 5-7 процентов относятся к активным флюсам (до 0,6). Пониженная химическая активность компонентов препятствуют процессу окисления легирующих присадок в сварочной проволоке. По химическому составу такие флюсы тяготеют к оксидному типу (малое содержание оксида кремния, низкое содержание оксида марганца и высокое содержание CaF2).

Составы для высоколегированных сталей. Типовым примером подобных составов является флюс для сварки нержавейки – практически пассивный состав солевого типа (с высоким содержанием фторидов и минимальным содержанием оксида кремния). В таких сталях содержится большой объем легирующих присадок (до 25 процентов от общей массы) поэтому химическая активность флюса должна стремиться к нулю. Причем содержание оксидов металлов во флюсах для высоколегированных сталей должно быть минимальным, поскольку все легирующие компоненты уже содержатся в сварочной проволоке.

Читать еще:  Полуавтоматический сварочный аппарат Ресанта САИПА-165

Составы для активных металлов. Эти составы относятся к пассивному, солевому типу. Содержание оксидов в таких флюсах попросту недопустимо. Ведь кислород – это основной катализатор процесса образования оксидной пленки, покрывающей любую деталь из активного металла. Зато солей (хлоридов и фторидов) металлов в таком флюсе содержится не менее 80 процентов.

Кроме того, электродуговые флюсы классифицируют еще и по способы производства, разделяя составы на:

  • Плавленые составы — изготовляемые из размягченных в печи материалов.
  • Керамические составы — изготовляемые из смеси на основе связки (жидкого стекла).

Флюсы для электрошлаковой сварки

Электрошлаковая технология предполагает использование совершено иных типов флюса. Ведь такой протектор должен не просто герметизировать зону сварки. Электрошлаковые флюсы обязаны проводить электрический ток и должны обладать высокой вязкостью, препятствующей проникновению вещества в зону стыка.

Поэтому такие флюсы насыщают большим количеством оксидов марганца, некоторым количеством оксида кремния и определенной долей фторидов. Типовым примером указанных составов является любая флюс паста для сварки, наносимая прямо на зону стыка. Причем расход такой пасты на порядок больше объемов флюса, используемого в процессе электродуговой сварки.

Причем по химическому составу такие флюсы делят на: высококремнистые и низкокремнистые; марганцевые и безмарганцевые; фторидные и содержащие минимум фтористых соединений. По степени вязкости флюса эти составы делят на: вязкие, слаботекучие и текучие разновидности.

Флюсы для газовой сварки

Сварка в среде защитных газов предполагает использование особого флюса. Основу протектора, в данном случае, составляет инертный газ (чаще всего – аргон или гелий). Впрочем, возможен вариант с использованием углекислого газа, который ограждает зону сварки и снижает окисление основного и присадочного материалов.

В зону сварки газообразный флюс подается под давлением, из особой форсунки, расположенной под неплавким электродом. Еще один вариант – подача из сопла, в которое встроен штуцер системы транспортирования присадочной проволоки.

Поэтому практически все флюсы для автоматической сварки – газообразные.

По химическому составу такие флюсы можно разделить на следующие разновидности: аргоновую (основа флюса – технически чистый аргон), гелиево-аргоновую (до 30 процентов гелия в составе), многокомпонентную (помимо аргона и гелия во флюсе встречается и азот, и кислород и прочие газы), углекислотную (флюс состоит из углекислого газа).

Выбор конкретного варианта зависит от глубины шва, типа электрода, присадочной проволоки и сорта основного металла. Причем технически чистый аргон подойдет в любом случае. Гелиево-аргоновая смесь обладает еще лучшими характеристиками, но в силу дороговизны гелия ее используют не часто. Углекислые флюсы, в основном, работаю в паре с графитовыми электродами, раскаляющими сварочную ванну до 3500 градусов Цельсия.

Читать еще:  Правила обозначения сварочных соединений на чертежах по ГОСТу

Причем, следует помнить, что подача флюса в зону сварочной ванны прерывается лишь после остывания шва ниже определенной температуры. Например, флюс для сварки алюминия – аргон или гелиево-аргоновую смесь – нужно «вдувать» в шов вплоть до остывания металла до 400 градусов Цельсия. Поэтому расходы газообразного флюса просто несравнимы с расходами твердых протекторов сварочной ванны.

Сварка с предварительной засыпкой ППМ

2.9. Способ сварки с предварительной засыпкой ППМ (см. рис. 1 , а) предназначен для двухсторонней сварки стыковых соединений без разделки кромок, а также для вы полнения соединений с разделкой кромок и тавровых «в лодочку». Для предотвращения просыпания ППМ сварку первого прохода стыков следует производить на металлическом листе. Для этих целей разрешается применять флюсовую подушку или подушку из ППМ.

При сварке листов толщиной до 36 мм зазор в стыке следует заполнять ППМ заподлицо с поверхностью листов; для толщин 36-60 мм зазор заполняют на 2/3 толщины свариваемого металла.

Толщина слоя ППМ при сварке тавровых соединений «в лодочку» должна быть на 2 мм больше величины катета шва.

2.10. Режим автоматической сварки под флюсом с предварительной засыпкой ППМ стыков без разделки и «в лодочку» следует назначать в соответствии с табл. 4 — 5 .

При сварке стыковых соединений других толщин, не указанных в табл. 4 , скорость сварки следует корректировать в соответствии с разделом «Расчет технологических параметров сварки» (приложение 2 ).

На режимах, указанных в табл. 5 , сваривают соединения «в лодочку» из низкоуглеродистых сталей. Режимы сварки низколегированных сталей «в лодочку» следует выбирать по методике, изложенной в приложении 3 .

Сварку за один проход угловых соединений «в лодочку» с катетом шва более 14 мм осуществляют на более мощных источниках питания.

При использовании источников сварочного тока ВДМ-1601, ВДМ-3001 и ВСЖ-1600 сварку швов тавровых соединений «в лодочку» до катетов 18-20 мм можно производить за один проход.

На режимах, указанных в табл. 4 , сваривают стыковые соединения из низкоуглеродистых и низколегированных сталей без предварительного подогрева, кроме сталей 16Г2АФ и 14Х2ГМР толщиной свыше 40 мм, режимы сварки этих сталей следует выбирать по методике приложения 3 .

2.11. Сварку стыковых соединений толщиной до 60 мм следует производить с двух сторон, по одному проходу с каждой стороны. Сварку второго прохода осуществляют в соответствии с табл. 4 на режиме первого, при этом засыпки ППМ не требуется. Сварку следует производить постоянным током обратной полярности.

2.12. Дозировка ППМ при сварке «в лодочку» осуществляется с помощью шаблона (рис. 4). Для выполнения сварки «в лодочку» необходимо заменить направляющее колесо трактора другим, более широким, имеющим выточку по окружности такой глубины, чтобы колесо не касалось слоя ППМ, предварительно засыпанного в разделку.

Режимы однодуговой автоматической двухсторонней сварки стыковых соединений без скоса кромок под флюсом с предварительной засыпкой ППМ

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×