Зимнее строительство
Зимнее строительство. Противоморозные добавки в бетон
Зимнее строительство считается более сложным из-за свойств бетона. В его состав входит вода, которая является обязательным компонентом такого важного процесса, как гидратация цемента. В ходе гидратации формируется окончательная структура бетона, он набирает свою прочность. Данный процесс может происходить только при плюсовых температурах: если вода замерзает, гидратация останавливается. И напротив, чем выше температура воздуха, тем быстрее идет процесс упрочнения бетона.
- Оптимальные условия для гидратации – температура воздуха 18-20С. В таких условиях бетон достигает необходимой прочности за 28 дней.
- Гидратация заметно замедляется при температуре ниже +10С. Так, при +5С бетон за 28 дней наберет лишь 70% необходимой прочности.
- При температуре ниже нуля вода, входящая в состав бетона, замерзает, и процесс гидратации останавливается.
Дополнительной сложностью в строительстве в зимний период является поддержание температуры самого бетонного раствора. Чтобы сохранять пластичность и способность к качественному уплотнению, раствор после смешивания должен иметь температуру не ниже 20-30С, а при укладке – не ниже +5С.
Таким образом, при низких температурах формирование качественной бетонной структуры значительно осложняется. Потому зимой на помощь строителям приходят технологии, способные снизить или полностью нивелировать воздействие холодов на процесс бетонирования.
Стоит отметить, что существует несколько способов работы с бетоном в условиях низких температур. Но большинство из них применимы лишь при крайне небольших объемах частного строительства (бани, хозяйственные постройки). Такие технологии, как создание термосного эффекта или длительное принудительное прогревание бетонной конструкции во время затвердевания и др., очень трудоемки, затратны и, как правило, невозможны при строительстве домов и других крупных объектов. Кроме того, учитывая наличие широкого спектра противоморозных добавок, иные способы поддержания температуры бетона оказываются нецелесообразными.
Добавки для повышения морозостойкости бетона работают комплексно: снижают температуру замерзания влаги, ускоряют процесс затвердевания бетона и помогают ему быстрее набрать прочность. Добавки в бетон — наиболее эффективный способ продолжить цикл бетонных работ при минусовых температурах.
От чего зависит скорость твердения
Факторы, влияющие на скорость застывания:
класс прочности (марку) цемента, если нормативным документом предусмотрено деление по классам прочности (маркам) в соответствии с ГОСТ 31108-2003 « Цементы общестроительные. Технические условия » (старое обозначение — марка цемента (М) ) ; 5.4.3 Маркировка должна быть отчетливой и содержать:
температура, при которой происходит застывание;
наличие тепловлажностной обработки;
Активная термообработка
Активная термообработка или электротермообработка – это искусственное внесение тепла в бетонную конструкцию в период ее твердения с целью достижения бетоном критической прочности в сжатые сроки.
Различают следующие методы электротермообработки бетона:
- электропрогрев;
- контактный электропрогрев;
- индукционный прогрев;
- инфракрасный нагрев.
Режим электропрогрева
Электропрогрев бетона: используют одно или трехфазный переменный ток нормальной частоты.
Электропрогрев бетона проводят при пониженных напряжениях (50-100 В).
Применяют две схемы электропрогрева: периферийный и внутренний.
Электропрогрев проводят с помощью электродов. По способу расположения электродов в прогреваемой конструкции они бывают внутренние и поверхностные:
- сущность внутреннего электропрогрева заключается в том, что электроды располагаются внутри бетонной конструкции; электрическая энергия преобразуется внутри бетона в тепловую;
- при периферийном электропрогреве электроды размещаются по наружной поверхности бетона; направление теплопередачи тепловой энергии – от периферии во внутрь конструкции.
Применяют три режима электропрогрева: трехступенчатый, двухступенчатый и пульсирующий (рис. 1).
Рис. 1. Графики режимов прогрева бетона:
а – изотермический режим; б – изотермический с остыванием;
Широко используется трехступенчатый режим
Сущность его состоит в следующем: первая ступень – происходит плавный подъем температуры до расчетного значения; вторая ступень – изотермический прогрев при постоянной температуре; третий период – остывание бетона от расчетной величины до 0 °С.
Контактный электрообогрев бетона
Для контактного электрообогрева монолитных тонкостенных конструкций довольно часто применяют термоактивные (греющие) опалубки. Тепло бетону передается через слои материала от электронагревателей различного типа – трубчатых (ТЭНы), сетчатых, кабельных. Особенно эффективно использование греющей опалубки для периферийного обогрева тонкостенных конструкций толщиной прогреваемого слоя бетона на одну поверхность нагрева не более 200 мм.
По сравнению с электропрогревом контактный электрообогрев дает экономию около 20 % потребляемой электроэнергии.
Рассматриваемый метод обогрева бетона имеет по сравнению с другими ряд преимуществ, а именно:
- электробезопасность;
- возможность применения для всех тонкостенных конструкций независимо от процента их армирования;
- высокая степень оборачиваемости опалубки;
- возможность предварительного обогрева опалубки с целью устранения наледи;
- возможность обеспечения более равномерного температурного поля и регулирования этого процесса.
При применении термоактивной опалубки температура бетонной смеси должна дать не ниже +5 °С.
Прогрев осуществляют при температуре 30-60 °С со скоростью подъема температуры 5-10 °С/ч.
В последнее время в качестве греющего элемента используют покрытия из полипропилена.
В качестве заполнителя в состав покрытия с целью повышения теплопроводности стали вводить ацетиленовую сажу.
Полипропиленовое покрытие, обладая гидрофобными свойствами, обеспечивает защитные и антиадгезионные функции.
Они наиболее целесообразны при бетонировании распластанных или наклонных тонкостенных конструкций с большими открытыми поверхностями.
ТАГП следует использовать сразу после укладки предварительно разогретой бетонной смеси.
Метод индукционного прогрева
Этот метод основан на использовании электромагнитной индукции, при которой энергия переменного электромагнитного поля превращается в арматуре или в стальной опалубке в тепловую и далее передается бетону. При прохождении электрического тока через обмотку-индуктор вокруг нее возникает градиентное магнитное поле.
В арматуре или металлической опалубке, находящейся в зоне этого поля, возникают вихревые токи, нагревающие металл, возникающее при этом тепло передается непосредственно бетонной среде.
Наличие электромагнитного поля обеспечивает более равномерный прогрев бетона, так как происходит более равномерное распределение влаги в прогреваемой конструкции. Применяют различные схемы индукторов: многоветвевые катушки, индукторы в виде плоской концентрической спирали, индукторы с сердечником из трансформаторной стали и др.
Удельный расход электрической энергии равен 130-150 кВтч/м3.
Индукционный прогрев целесообразно использовать при термообработке стыков сборных конструкций, сооружений, возводимых в переставной и скользящей опалубках и др.
Инфракрасный нагрев бетона
Он основан на передаче лучистой энергии от генератора инфракрасного излучения нагреваемым поверхностям через воздушную среду.
Инфракрасный нагрев применяют при термообработке монолитных стыков сложной конфигурации, густоармированных стыков старого бетона с укладываемым; он рационален для нагрева горизонтальных тонкостенных конструкций (плит, оболочек), обогрева «активной» поверхности железобетонной несъемной опалубки и др.
Обогревают инфракрасными лучами как открытые поверхности бетона, так и закрытые опалубкой.
В качестве генераторов излучения используют трубчатые, стержневые карборундовые излучатели. Удельная мощность таких излучателей – 0,6-1,2 кВт/м, температура – 1300-1500 °С.
Генераторы излучения помещают в металлический сферический или трапецеидальный отражатели.
Преимуществами метода являются:
- простота изготовления и эксплуатации;
- электробезопасность;
- отсутствие необходимости в переоборудовании опалубки;
- возможность отогрева основания, удаление наледи до бетонирования.
К числу недостатков можно отнести:
- существенная трудоемкость метода, связанная с переносом, расстановкой и подключением к электрической сети инфракрасных излучателей;
- высокий удельный расход электроэнергии.
Основные рекомендации
Несмотря на то, что ответ на вопрос “Можно ли заливать бетон зимой?” – утвердительный, необходимо неукоснительно следовать всем технологическим требованиям.
- Перед началом процесса необходимо подготовить основание в соответствии с технологией. Необходимо убрать снег и наледь со дна и установленной арматуры. Чтобы избежать обледенения дна, подготовиться к заливке необходимо сразу после того, как котлован выкопали и засыпали песчаную подушку. Для этого дно выстилают соломой.
- Перед началом заливки бетонного раствора необходимо также прогреть грунт между стенками опалубки. В противном случае грунт будет оттаивать и проседать, причем неравномерно.
- Также следует позаботиться о том, чтобы была возможность подойти к опалубке с любой стороны.
- Если на поверхности залитого бетона образовалась гелиевая оболочка, ее следует убрать.
Заливать фундамент в зимнее время частями категорически нельзя. Также нельзя делать перерывы в работе. Заливка производится небольшими по высоте и длине участками, которые сразу же перекрываются следующей порцией бетона, чтобы постоянно поддерживать температуру на нужном уровне.
© 2016 — 2019 гг. «Кровля — плюс», г. Санкт-Петербург, ул. Ивановская, д. 24/2
Тел.: +7 (921) 944 — 35 — 97, +7 (921) 652 — 35 — 09
Зимнее бетонирование
Зимним бетонированием называется процесс укладки бетона при температурах ниже +5°С. Процессы нормальной гидратации цемента и твердения бетона при отрицательных температурах замедляются и останавливаются, теряется прочность, водонепроницаемость и морозостойкость строительной конструкции.
Тем не менее строительный цикл в большинстве регионов страны зимой не останавливается, да и погода может преподносить неожиданные сюрпризы. Если на большом строительном объекте обычно есть специалисты, владеющие технологиями промышленного зимнего бетонирования, известны расчеты, технологические контрмеры, есть в наличии специальное оборудование, то на небольшом объекте при частном строительстве морозы могут внести заметные коррективы в план.
Мы рассмотрим частые вопросы производства бетонных работ в зимний период с применением комплексных противоморозных добавок и дадим конкретные технологические рекомендации.
Зимой заливать бетон можно!
Что произойдет, если просто залить бетон зимой без дополнительной защиты?
Во-первых, потеря марочной прочности на половину и более (т.е. из М600 получится М300). Это нужно учитывать заранее. Расчетные нагрузки, которые должна выдержать конструкция, придется увеличить вдвое. Фактически, весь набор прочности железобетона происходит при положительных температурах. Если за 3-е суток в тепле состав успел набрать, например, 50% или 70% прочности, то после замерзания прочность готового изделия не увеличится.
Во-вторых, повторный набор прочности, в лучшем случае, продолжится при возобновлении положительных температур, но с потерей марки и верхнего слоя бетона. В худшем — весь бетон можно будет смести веником — он больше никогда не продолжит твердение. Определить результат, как правило, можно только новыми испытаниями опытного образца.
Кстати, с применением обычных солевых противоморозных добавок (ПМД) вашу конструкцю ожидает практически то же самое.
Почему зимой бетон не набирает прочность?
Низкая температура (0+10 градусов) существенно затормаживает процесс гидратации цемента, т.е. растягиваются сроки набора прочности бетона. Отрицательная температура полностью останавливает набор прочности. Причина тому — вымерзание воды в молодом бетоне.
Сам процесс гидратации цемента невозможен без влаги в жидкой фазе. Вода является необходимым компонентом для образования цементного камня. Цемент должен находиться в контакте с водой (влагой) в течение всего времени созревания.
При температурах близких к 0°С происходит медленное образование крупных кристаллов льда, которые разрушают непрочную на начальных стадиях твердения кристаллическую структуру состава.
Как правильно проводить зимнее бетонирование?
• Лучший способ — с применением электроразогрева бетона. Электрический прогрев чаще применяется на больших строительных объектах, где есть техническая возможность использовать трансформаторы мощностью от 30 кВт. Для частного застройщика зимний разогрев бетона в реальных условиях – маловероятное (хотя и желательное) технологическое решение.
• При первых заморозках и температурах близких к нулю, нередко достаточно просто накрыть свежеуложенный бетон — он согреет сам себя. Как известно, при гидратации цемент выделяет тепло, его необходимо лишь сохранить. Для этого конструкцию укрывают ПВХ пленкой или теплоизоляцией.
• При более низких температурах возможно устроить строительный тепляк — сплошной тент из пленки на каркасе из досок — с обогревом газовыми или электрическими тепловыми пушками. В этом случае нагревать конструкцию тепловыми пушками для первичного набора прочности достаточно в течение 1-3 суток.
• Если приготовление раствора происходит на площадке, можно предварительно хранить цементно-песчаную смесь в отапливаемом помещении, а также подогреть воду для затворения. При нагревании воды необходимо дать запас на выравнивание температуры с заполнителями, а также на время перемешивания и заливки. При подогреве только воды время смешивания необходимо увеличить на 25% от летних нормативов.
Однако, если одну из этих мер сочетать с применением комплексной морозостойкой добавки — вы получите высокомарочный бетон с быстрым набором прочности, который прослужит вам много лет.
Что такое противоморозные добавки для бетонных растворов?
В строительной индустрии для решения указанных задач в зимний период наиболее распространены добавки типа ПМД (ПротивоМорозная Добавка) и КМД (Комплексная Морозостойкая Добавка).
В любом случае, все противоморозные добавки — это набор солей. Почему? Соли лучше всего предотвращают замерзание раствора, аналогично обработке дорог в зимние месяцы. На данный момент все добавки представляют собой поваренную соль или хлористый кальций, иногда, с добавлением ингибиторов коррозии, таких как нитрат кальция.
Тем не менее добавление соли, как и на дорогах, несет в себе нежелательные последствия — соль приводит к коррозии арматуры, что сказывается на сроке эксплуатации объекта.
Более того, при контакте с водой со временем растворимые соли вымываются, это постепенно снижает прочность бетона.
Недостатки солевых добавок привели к необходимости создания т.н. комплексных противоморозных добавок, которые разрешают технологическое противоречие солевых растворов путем введения дополнительных химических компонентов.
Кристаллизол КМД представляет собой состав собственной разработки, позволяющий уменьшить содержание солей в несколько раз при достижении эффекта максимально соленасыщенных противоморозных добавок. Этот эффект возможен за счет повышения концентрации солей локально, вокруг вяжущего, а не во всем составе.
Нужны ли дополнительные меры при применении противоморозных добавок?
Этот вопрос, если подойти к нему без коммерческих спекуляций — крайне важный. И для ответа на него необходимо определить некоторые исходные:
— готовим ли мы бетон на строительной площадке зимой? В момент добавления КМД раствор должен быть теплым. Т.е. замешивание бетона из холодного сырья на стройплощадке не допускается.
— в момент заливки бетона — насколько холодная арматура? Если ее температура опустилась ниже -7°С — она быстро охладит весь раствор. Ее желательно прогреть.
— планируется ли продолжить строительство? Если необходимо выливать бетон с последующими нагрузками на него (например, фундамент), и вы не станете ждать оттепели — требуется быстрый полный набор прочности.
Оцените ситуацию на берегу. Такие меры, как укрытие бетона или сооружение тепляка, не слишком затратны, однако способны в несколько раз увеличить конечную прочность бетона, даже с применением комплексной морозостойкой добавки.
Зачем еще нужны противоморозные добавки?
Мнение, что противоморозные добавки нужны только для того, чтобы довезти раствор в зимнее время до места назначения — большое упрощение комплексной задачи зимнего бетонирования.
1. Да, противоморозная добавка позволяет сохранить подвижность раствора в минусовые температуры. Доставка – важный этап, часто сопоставимый по стоимости с самим материалом. И хотя раствор в бетономешалке сам выделяет тепло, комплексная добавка сделает эту логистику совершенно незаметной для качества конечного бетона.
2. Добавка нужна для того, чтобы раствор принял нужные формы. Зимой удобоукладываемость бетона сильно снижается, а строителю крайне важно, чтобы он ложился мягко, не оставлял пустот и каверн, был послушен, как разогретый в руках пластилин.
3. Добавка нужна для того, чтобы вода не замерзла, и цемент мог начать гидратацию.
4. Нужна она и для того, чтобы ускорить набор прочности — в зимнем бетонировании каждый день на счету.
5. Чтобы защитить бетон — если он все же замерз, то в оттепель он продолжит набирать свою прочность, а не разрушится в труху. Внезапно ударивший мороз не сведет на нет ваши усилия и затраты.
6. Чтобы спасти марку бетона. Как известно, зимнее бетонирование существенно снижает марочность бетона. Применение комплексных добавок позволяют вам сохранить до 100% расчетной прочности.
7. Комплексные добавки работают не столько с водой, сколько со структурой цемента. В результате чего мы получаем:
— повышение плотности без вибрирования;
— водонепроницаемость без специальных добавок;
— увеличение морозостойкости
и другие преимущества.
Таким образом, транспортировка при минусовых температурах – далеко не единственное преимущество КМД при строительстве зимой.
Итак, краткая памятка по зимнему бетонированию:
1. На момент заливки и введения добавки раствор должен быть теплым.
2. При температуре ниже -7°С, арматура нуждается в прогреве. (Учтите, что теплопроводность стеклопластиковой арматуры в 100 раз ниже, чем у стальной).
3. Не рекомендуется применение КМД при температурах выше +25°С– возможно снижение подвижности смеси.
4. Перед применением добавку необходимо тщательно взболтать, перемешать. Некоторые виды солей опадают в осадок при хранении, это допускается заводом-изготовителем.
5. Чтобы уберечь тару в минусовые температуры, в куб КМД рекомендуем поместить несколько кусков пенопласта, тогда куб не лопнет в любые морозы.
6. При заказе Кристаллизол КМД учитывайте температуру воздуха, т.к. концентрация добавки зависит от температуры напрямую.
На 100 кг цемента:
1 л — до -5°С
1,5 л — до -10°С
2,0 л — до -15°С
2,7 л — до -20°С
3,5 л — до -25°С
У строителей часто возникает недопонимание в вопросах комплексных морозостойких добавок, ведь они одновременно увеличивают подвижность смеси и ускоряют твердение. Нет ли тут противоречия? Ничего удивительного, этот эффект аналогичен свойствам гипса: в процессе замешивания и лепки он пластичен, в неподвижном состоянии он быстро отвердевает.
Если ваши индивидуальные условия производства работ нетипичны, и вам потребуется консультация – обращайтесь к официальному дилеру Кристаллизол КМД , специалисты компании-представителя или завода-изготовителя всегда проконсультируют вас.
По материалам
Тихонко А. М.
технолог ООО «ПК ГидроСтройКомплект», один из разработчиков Кристаллизол КМД .
Сомневаетесь, что выбрать? Позвоните +7(812)925-63-09, мы поможем подобрать гидроизоляционные материалы и техническое решение для вашей задачи.
Кроме того, мы выполняем гидроизоляционные работы под ключ с гарантией результата.
Способы искусственного нагрева и прогрева бетона
Сущность этого метода заключается в создании и дальнейшем поддержании температуры смеси при максимально допустимой величине, пока бетон не наберет требуемую прочность. Этот способ применяется в случаях, когда метода «термоса» оказывается недостаточно.
Существует несколько вариантов достижения требуемого результата:
- Физический смысл электродного прогрева аналогичен выше описанному методу электродного разогрева смеси. В данном случае используется теплота, которая выделяется смесью при пропускании через нее электрического тока. Для подведения электротока к бетону применяют электроды нескольких типов: пластинчатые, струнные, полосовые, стержневые. Наиболее эффективными являются пластинчатые электроды, изготавливаемые из кровельной стали. Пластины нашивают на поверхность опалубки, непосредственно соприкасающуюся с бетоном, и подключают к разноименным фазам сети. Между противолежащими электродами происходит токообмен, в результате чего осуществляется нагрев всей бетонной конструкции.
- Сущность контактного или кондуктивного нагрева заключается в использовании тепла, выделяемого в проводнике во время прохождения по нему электротока. Контактным способом теплота передается всем поверхностям бетонного элемента. От поверхностей тепло распространяется по всей конструкции.
Для контактного нагрева бетона используют термоактивные гибкие покрытия или термоактивные опалубки.
- Способ инфракрасного нагрева основан на способности инфракрасных лучей при их поглощении телом трансформироваться в тепловую энергию. Теплота от излучателя к нагреваемому телу осуществляется моментально без использования переносчика тепла. В качестве генераторов инфракрасных волн используют кварцевые и трубчатые металлические излучатели. Инфракрасный нагрев применяется для отогрева арматуры, промороженных бетонных поверхностей, тепловой защиты уложенной бетонной смеси.
- При индукционном нагреве используется теплота, которая выделяется в стальной опалубке или арматурных деталях и изделиях, расположенных в электромагнитном поле катушки-индуктора. Этот метод применяется с целью отогрева ранее выполненных бетонных конструкций при любой температуре окружающей среды и в любой опалубке.
Соблюдение рекомендаций по зимнему бетонированию позволит избежать утраты прочностных характеристик бетонных и железобетонных конструкций, выполненных при пониженных температурах наружного воздуха.