Termokings.ru

Домашний Мастер
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полусухая стяжка на теплый пол

Нет никаких причин не использовать или ограничивать использование полусухой стяжки для укрытия контуров теплого пола.

Основа полусухой стяжки цементный раствор, который после застывания набирает характеристики близкие к характеристикам цементно-песчаной стяжки. Однако, коэффициент теплопроводности полусухой несвязанной ЦПС значительно ниже теплопроводности обычной ЦПС. Значения 0,37-0,46 по сравнению с 0,58-0,76.

Мы знаем, чем меньше теплопроводность, тем материал хуже пропускает тепло. Для теплого пола это означает, что теплый пол укрытый полусухой стяжки будет дольше прогреваться. Вместе с тем, слой полусухой стяжки будет лучшим аккумулятором тепла, и отдача его в помещение будет более равномерной.

Здесь важно заметить, что для теплого пола подходит только изолированная полусухая стяжка. Слой изолированной стяжки не должен быть химически связан с основанием пола и со стенками помещения. Кроме этого, в стяжке нарезаются температурные швы. В квартирах, швы нарезаются под полотном межкомнатной двери на границе установки межкомнатной двери. Отличные межкомнатные двери вы найдете на сайте мастердвери.

Минимальная толщина стяжки

Наше знакомство с физическими свойствами рассматриваемой конструкции начнем с того, что толщина стяжки пола в квартире не допускается менее 20 мм. В противном случае неизбежно ее разрушение в силу слабой износостойкости. То есть, следует в самом низком месте рассчитать ее так, чтобы она была еще толще.

Совсем другое дело – это толщина стяжки для водяного теплого пола. Тут ее должно хватать, чтобы спрятать трубы. Кроме того, здесь рекомендуется сделать теплоизолирущую подушку из керамзита. Соответственно уровень значительно повышается.

Виды цементно-песчаных смесей по функциональному назначению

По основному назначению растворы на базе ЦПС в соответствии с ГОСТом на следующие виды:

  • Кладочные. Для приготовления кладочных растворов, предназначенных для возведения стен из кирпича, используется песок, размер зерна которого не превышает 2,5 мм. Для кладки из бутового камня может использоваться пластичный материал, в котором величина зерен песка достигает 5 мм.
  • Монтажные, в том числе используемые при устройстве стяжки пола. Для заливки пола используются ЦПР не ниже марки М150. Такие пластичные продукты после затвердевания образуют слой с высокой водонепроницаемостью. Цементно-песчаные растворы (ЦПР) могут использоваться для стяжек толщиной не более 30 мм. Если их толщина превышает эту величину, то потребуется бетонная смесь.
  • Облицовочные. Это могут быть мелкодисперсные составы, позволяющие получать очень гладкую поверхность, или материалы с декоративными компонентами – мраморной или гранитной крошкой, кусочками слюды или стекла.
  • Штукатурные. При производстве штукатурных ЦПР используется песок с крупностью зерен до 2,5 мм, для накрывочного слоя – 1,25 мм. Требуемую марку раствора выбирают в зависимости от его функционального назначения. ЦПР М50 может использоваться только для окончательной отделки поверхности, М100 – для внутренних отделочных работ в комнатах с обычным уровнем влажности. Для отделки стен и потолков во влажных помещениях, а также оштукатуривания фасадов понадобится ЦПР марки не ниже М150.

3 мифа о монтаже тёплого пола

Давайте попробуем разобраться, каковы самые распространенные заблуждения о применении теплоизоляционных материалов для тёплых полов и что может произойти, если руководствоваться не рекомендациям профессионалов, а устоявшимися мифам и желанием сэкономить.

Миф №1: Фольга в тёплом поле не отражает тепло, а распространяет его по поверхности

На стандартный вопрос о необходимости применения фольгированной теплоизоляции при монтаже тёплого пола зачастую можно услышать такое рассуждение: «Тепло от нагревательного элемента отражается от слоя фольги и передается в помещение».

Попробуем разобраться, так ли это. Если вспомнить законы физики, то тепло может передаваться тремя основными способами:

  • От молекулы к молекуле (теплопроводность);
  • Путем перемещения молекулы в пространстве (конвекция);
  • Путем испускания и распространения, рассеивания и поглощения волновой энергии (излучение).

Так как тепловое излучение возможно только в прозрачной для тепловых волн среде (например, воздухе), то для отражения тепла от алюминиевой фольги перед ней обязательно должен присутствовать зазор. Тёплый пол представляет собой конструкцию из нагревательных элементов, которые с определенным шагом укладываются на теплоизолированное основание. Сверху всё это заливается цементно-песчаной стяжкой, на которую укладывается финишное покрытие пола. То есть никакого воздушного зазора над фольгой там быть не может, и, соответственно, никакого отражения тепла в конструкции тёплого пола нет в принципе! Тепло от нагревательных элементов распространяется только за счет теплопроводности.

Коэффициент теплопроводности алюминиевой фольги в 200 раз выше, чем у стяжки. Поэтому фольгированное покрытие теплоизоляционного материала нагревается значительно быстрее и само начинает нагревать стяжку. Таким образом, тепло равномерно распределяется по поверхности пола, что позволяет избежать образования зон локального перегрева. То есть алюминиевая фольга как покрытие теплоизоляции в конструкции тёплого пола необходима для лучшей теплопроводности, а не для отражения.

Читать еще:  Плиты перекрытия в доме из газобетона и пеноблоков

Миф №2: Металлизированный лавсан не распределяет тепло по поверхности пола

К сожалению, в большинстве случаев заявленный производителем алюминий на поверку оказывается просто слоем блестящего материала, не имеющего никакого отношения к металлу. Например, лавсановой плёнкой с металлизированным напылением, которая широко используется для упаковки продуктов питания: чипсов, орешков и т.п. Теплопроводность такого материала значительно ниже, чем у алюминия, а значит, отсутствует равномерное распределение тепла. В результате участки стяжки и напольного покрытия, расположенные непосредственно над нагревательными элементами, прогреваются значительно сильнее, чем участки между ними. Как следствие – образуются зоны локального перегрева (так называемая «тепловая зебра»), что приводит к растрескиванию цементно-песчаной стяжки и деформации напольного покрытия. То есть, к примеру, заботливо уложенная на кухне или в ванной комнате керамическая плитка просто лопнет и отвалится.

Миф №3: Фольга без полимерной защиты растворяется цементно-песчаной стяжкой

Та же участь может постигнуть напольное покрытие и при использовании в конструкции тёплого пола фольгированной изоляции без полимерной защиты. Дело в том, что алюминий растворяется в щелочной среде. А жидкая цементно-песчаная стяжка как раз и есть такая среда. Поэтому применение фольгированной теплоизоляции без защитного покрытия приводит в прямом смысле слова к исчезновению алюминиевого слоя. Для того чтобы понять как это происходит, давайте рассмотрим химические процессы, которые протекают во время устройства конструкции теплого пола.

Цементно-песчаная стяжка выполняется из цементно-песчаной смеси затворением (добавлением) определенного количества воды. Сам цемент (а правильней называть его портландцемент) представляет собой продукт совместного помола клинкера, гипсового камня и добавок. Основу клинкера портландцемента составляют оксиды кальция и кремния (более 85%). При их взаимодействии с водой образуется гидросиликат кальция (нерастворимый в воде) и гидроксид кальция (щёлочь).

Алюминиевая фольга – это тонкий слой алюминия, покрытый сверху плёнкой из оксида алюминия, которая при взаимодействии со щелочной средой цементно-песчаного раствора растворяется. В результате образуются алюминаты – соли содержащий алюминий в составе аниона. Лишённый защитной пленки алюминий взаимодействует с водой, вытесняя из нее водород. Образующийся при этом гидроксид алюминия реагирует с избытком щёлочи, образуя гидроксоалюминат.

Таким образом, алюминиевая фольга при взаимодействии с жидким цементным раствором просто растворяется, а значит, исчезает слой, по которому распределяется тепло от нагревательных элементов. В итоге – возникновение той же «тепловой зебры» и как следствие – трещины в плитке.

Именно поэтому стоит обращать тщательное внимание на толщину алюминиевого слоя и его защитного покрытия. Ведь часто можно встретить материалы с фольгой толщиной всего… 7 микрометров. Конечно, для равномерного распределения тепла от нагревательных элементов этого недостаточно.

Выводы:

Таким образом, для того, чтобы тёплый пол эффективно выполнял свои функции и при этом исправно работал в течение многих лет надо учесть несколько простых правил:

  • Не металлизированная плёнка, а фольга – не применять изоляцию с лавсаном или любым другим материалом, который только блестит как фольга, но на деле ей не является;
  • Фольга с защитным покрытием – использовать в качестве теплоизоляционного слоя фольгированный материал с защитным полимерным покрытием;
  • Толщина фольги не меньше 30 мкм – сделать выбор в сторону наибольшей толщины фольги (не менее 30 микрометров).

Не секрет, что самое важное для потребителя – получить работоспособную и надежную систему тёплого пола по оптимальной цене. Поэтому профессиональнее предложить специализированный теплоизоляционный материал, а не его дешёвую подделку, пытаясь сэкономить деньги клиента (особенно, если он об этом не просит). Ведь результатом такой экономии в лучшем случае может стать потеря деловой репутации.

В худшем – придется менять пол…

Источник статьи: лидер рынка и эксперт в технической теплоизоляции

Теплоизоляция пола под стяжку: основные функции, технология монтажа

Дата публикации 17-10-2019 572

Выбор и технология монтажа утеплителя под стяжку пола обусловлены задачами, для решения которых предназначена данная конструкция. И прежде чем приступить к описанию технологии монтажа следует определить основные функции конструкции “плавающий пол” .

“Плавающий пол” (или стяжка) предполагает применение звукоизолирующей основы и жесткого основания (цементно-песчаной стяжки или стяжки из дсп). Такое решение обеспечивает отсутствие связи между перекрытием и другими конструктивными элементами и решает, в первую очередь, задачи снижения ударного шума. Устройство стяжки продиктовано необходимостью следовать нормативам по ударной звукоизоляции перекрытия – 60 дБ, установленным СНиП 23-03-2003 «Защита от шума». Поэтому в целях обеспечения акустического комфорта в помещении предусмотрено обязательное применение звукоизоляционной основы под стяжку. То есть, когда речь идет об укладке утеплителя под стяжку, то приоритетными задачами, которые решаются являются все-таки вопросы звукоизоляции.

Читать еще:  Гараж из керамзитобетонных блоков с односкатной крышей

Основные задачи, которые решает конструкция “плавающий пол” — звукоизоляция ударного шума

В большинстве случаев при устройстве стяжки достаточно использовать слой изоляционного материала толщиной 5 -10 мм. Этого хватит не только для эффективного снижения уровня ударного шума, но и для дополнительной теплоизоляции.

Конструкция «плавающий пол»

Свойства и технические характеристики сшитого пенополиэтилена

Один из наиболее подходящих и экономичных звукоизоляционных материалов среди существующих альтернатив – сшитый пенополиэтилен. Материал подходит для шумоизоляции пола, лестничных площадок, звукоизоляции межэтажных перекрытий, звуко- и гидроизоляции сантехкабин, трубопроводов, мусоропроводов.

В процессе производства материал приобретает особую структуру, в основе которой — плотно соединенные ячейки, наполненные воздухом. Такая особенность обеспечивает материалу хорошие теплоизоляционные свойства (коэффициент теплопроводности, Вт/м°С 0,041 (при t = 25°С) и 0,038 (при t = 10°С)).

К наиболее важным свойствам материала можно отнести: высокую упругость (модуль упругости 0,5 МПа при нагрузке 200 Н/м²) и сопротивляемость нагрузкам, высокие звукоизоляционные свойства (индекс снижения ударного шума 23-25 дБ).

Материал не впитывает влагу, а поэтому в конструкции способен обеспечивать дополнительную гидроизоляцию.

Укладка утеплителя под стяжку

Технология укладки теплоизоляции под стяжку предусматривает использование звукоизоляционного слоя по всей поверхности плиты с заведением части материала на стену выше уровня стяжки, чтобы избежать образования «звуковых мостиков».

Откуда берется влага в строительных конструкциях?

Проектирование фундаментов, оснований и других бетонных сооружений ведется таким образом, чтобы добиться минимально возможного содержания влаги. Однако вода попадает в них как на стадии строительства, так и во время эксплуатации. Основные причины наличия влаги в бетоне:

  • попадание атмосферных осадков: дождя, снега;
  • поглощение (сорбция) влаги из воздуха;
  • конденсация паров воды на поверхностях конструкций;
  • воздействие грунтовых вод;
  • остаточная технологическая влажность – остатки воды, использованной при затворении смеси.

Наиболее распространенными причинами избыточной влажности считаются нарушение технологического процесса при изготовлении бетона и снижение эффективности гидроизоляции вовремя его эксплуатации.

Избыточная влажность оказывает негативное влияние на нормативный срок службы и свойства строительных конструкций. В перечень наиболее серьезных последствий переувлажнения входят:

  • коррозия стальной арматуры;
  • снижение морозостойкости;
  • увеличение теплопроводности;
  • солевая эрозия;
  • биоповреждение.

Измерение влажности бетона, цементной стяжки и штукатурки играет важную роль в жилом строительстве. Она влияет на прочность сцепления с лакокрасочными материалами и долговечность уложенных поверх финишных покрытий.

Процесс изготовления стяжки

О процессе заливки стяжки из полистиролбетона я расскажу более детально. Начнем с подготовки рабочей поверхности. Здесь все как обычно – в первую очередь нужно освободить поверхность от любых остатков строительного мусора, грязи и пыли. Большие выступы, наплывы раствора сбиваются, а трещины заделываются специальной смесью.

После этого весь периметр помещения оклеивается специальной демпфирующей лентой, которая впоследствии будет защищать стяжку от возникновения трещин. Важно, чтобы она была наклеена на всю высоту стяжки с небольшим запасом.

Затем необходимо выставить маяки. Для этого я использую прямые деревянные бруски, металлические направляющие или шурупы. Уровень выставляется по лазерному нивелиру. Расстояние между маяками определяется в соответствии с длиной правила, которое планируется использовать.

Замес раствора

Один из наиболее важных этапов – это замес раствора. На практике я часто сталкивался с мелкими сложностями именно во время подготовки смеси. Я сразу рекомендую вам использовать бетономешалку или, в случае применения миксера – большую емкость с запасом объема.

Если вы используете сухую смесь в мешках, то строго следуйте рекомендациям производителя, не нарушая технологии. Сложнее обстоит дело, когда вы сами готовите смесь. Итак, от вас потребуется следующее:

  • Сразу точно рассчитайте пропорции – ниже я приведу ориентировочные цифры для стяжки с усредненными эксплуатационными характеристиками. Разделите общий объем материалов на небольшие порции, чтобы вам было удобнее замешивать раствор, иначе пенополистироловые шарики будут разлетаться во все стороны и смесь получится неравномерной
  • Подготовьте емкости и миксер или бетономешалку – с ней работать намного удобнее и качество смеси получается выше
  • Залейте в емкость воду – примерно половину отмеренного объема, и добавьте в нее гранулы полистирола, хорошо перемешайте их, чтобы их поверхность смочилась
  • Добавьте в емкость цемент и еще 30% от оставшегося объема воды, хорошо перемешайте до получения однородной массы. Все шарики полистирола должны обволакиваться цементным раствором равномерно
  • В остатке воды разведите пенообразующую добавку и введите ее в раствор. Вымешивайте на протяжении нескольких минут, после чего смесь можно использовать по назначению

Что касается пропорций, то для получения полистиролбетона средней прочности с оптимальными теплоизоляционными свойствами вам понадобится на одну часть цемента использовать пять частей полистирола. Также я советую исходить из пропорции: 120 литров воды + 240 кг цемента + 1 кубометр гранул + 0,65% добавки для получения полистиролбетона плотностью 300.

Читать еще:  Бетонный забор своими руками: производство, монтаж и декорирование

Альтернатива пенообразователю

Заливка и выравнивание полистиролбетонной стяжки

Перед заливкой готового раствора я рекомендую увлажнить поверхность водой или цементным молочком для лучшей адгезии и более легкого распределения раствора или же уложить строительный полиэтилен. Смесь аккуратно выкладывается между маяками так, чтобы возвышаться над ними на 1-2 сантиметра. Затем при помощи правила, как и в случае с обычной цементно-песчаной смесью, раствор выравнивается по маякам так, чтобы в стяжке не оставалось полостей. Использование армирующих сеток при этом не возбраняется.

Затем важно обеспечить отсутствие сквозняков, чтобы в течение суток раствор мог схватиться. После этого можно будет извлечь маяки (если используются демонтируемые маяки), а образовавшиеся полости заделать аналогичной смесью. Если стяжка заливается в помещении большой площади (от 30-ти метров и более), я всегда оставляю деформационные швы, чтобы впоследствии избежать растрескивания в результате термических деформаций основания.

Полезный совет!

В промышленных масштабах полистиролбетон заливается при помощи специального оборудования, как это показано на видео ниже.

Цена на стяжку из полистиролбетона

Полистиролбетонная стяжка

Класс прочности на сжатиеВ1,5

Плотность (D) — 400 кг/м 3

Теплопроводность0,10 Вт/мС

Звукопоглощение17 дБ (при толщине 6 см)

Стоимость полистиролбетонно й стяжки (с материалом) D400 – от 600 руб./кв.м. (при толщине стяжке не более 6 см, объем работ — до 100 кв.м.).

Стоимость полистиролбетонной стяжки (с материалом) D400 — договорная (при толщине стяжке не более 6 см, объем работ — до 100 кв.м.).

К онечная цена полистиролбетонной стяжки от многих моментов, таких как стоимость сырья (цемента, песка, вспененного полистирола) на момент начала работ, толщина стяжки , объема работ , удаленности объекта , условия работы , места заливки , наличия коммуникаций и пр.

Обращаем Ваше внимание! Действует гибкая система скидок.

Полистиролбетонная стяжка может быть выполнена под заказ любой плотности от D300 до D800.

В своей работе компания Профи-Строй использует мобильное оборудование по производству полистиролбетона, что позволяет выезжать на строительную площадку (объект) заказчика.

Компания Профи-Строй подходит к каждому клиенту индивидуально и готова выполнить любые Ваши заказы по работам по полистиролбетонной стяжке с заданной Вами плотностью .

Исследование теплопроводности полусухой цементно-песчаной стяжки

Центр «ЭНЕРГОСБЕРЕЖЕНИЕ В СТРОИТЕЛЬСТВЕ» (кафедра «Гидравлики и Теплотехники» Самарского государственного архитектурно-строительного университета) по заказу Компании «ВЕРИ» произвел исследование теплопроводности полусухой несвязанной цементно-песчаной стяжки.

Введение

Методика проведения испытаний на теплопроводность строительных и теплоизоляционных материалов

Определение коэффициента теплопроводности проводилось стационарным методом в соответствии с использованием измерителя теплопроводности ИТП-МГ 4 «250».

Прибор обеспечивает определение коэффициента теплопроводности в диапазоне значений λ = 0,02-1,5 Вт/(м*К). Погрешность определения коэффициента теплопроводности составляет не более 5 %.

Принцип работы прибора заключается в создании стационарного теплового потока, проходящего через плоский образец определенной толщины и направленного перпендикулярно к его лицевым граням, измерении толщины образца, плотности теплового потока и температуры противоположных лицевых граней.

Общий вид прибора представлен на рисунке:

Нагревательная установка прибора включает блок управления нагревателем и холодильником, а также источник питания. Питание на электронный блок подается от нагревательной установки по соединительному кабелю. В верхней части установки размещен винт, снабженный отсчетным устройством для измерения толщины образца и динамометрическим устройством с трещоткой для создания постоянного усилия прижатия испытываемого образца. Образцы для испытаний подготавливают в виде прямоугольного параллелепипеда, наибольшие (лицевые) грани которого имеют форму квадрата со стороной 250×250 мм. Длину и ширину образца в кладке измеряют линейкой с погрешностью не более 0,5 мм. Толщина испытываемого образца должна составлять от 5 до 50 мм. Толщину образца Н в метрах, и разницу температур между нагревателем и холодильником АТ в градусах Кельвина, необходимо выбирать в соответствии с рекомендациями, приведенными в зависимости от прогнозируемой теплопроводности материала. Грани образца, контактирующие с рабочими поверхностями плит прибора, должны быть плоскими и параллельными. Отклонение лицевых граней жесткого образца от параллельности не должно быть более 0,5 мм. Толщину образца измеряют штангенциркулем с погрешностью не более 0,1 мм в четырех углах на расстоянии 50 мм от вершины угла и посередине каждой стороны. За толщину образца принимают среднеарифметическое значение результатов всех измерений. Вычисление коэффициента теплопроводности λ, Вт/(м*К), и термического со- противления R, (м2 *К)/Вт, производится вычислительным устройством прибора.

Результаты испытаний образцов из полусухой несвязанной цементно-песчаной стяжки производства компании «ВЕРИ» на теплопроводность

Плотность стяжки в сухом состоянии, кг/м3

Коэффициент теплопроводности стяжки λ, Вт/(м*К)

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×