Termokings.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить трехфазный двигатель к сети 220 или 380 В

Как подключить трехфазный двигатель к сети 220 или 380 В?

Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

Однофазные асинхронные электродвигатели

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.

Вариант 1: переподключение рабочей намотки

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Читать еще:  Угловые Двухсторонние Фрезы по Металлу ГОСТ Р 50181-92

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Принцип работы и устройство

Очень важно понять, на чем основан принцип работы пускателей, а также как они устроены, чтобы лучше понимать схему подключения.

Основу конструкции представляет электрический магнит, который, в свою очередь, состоит из подвижной и неподвижной части. Магнитопровод отличается «Ш» — образной формой, при этом он как бы разрезан по середине и установлен «ногами» друг против друга.

Устройство магнитного пускателя

Как правило, нижняя часть является неподвижной и надежно закреплена на корпусе. Верхняя часть является подвижной и установлена на пружинах, которые автоматически отключают пускатель, если на катушке отсутствует рабочее напряжение. Следует отметить, что выпускаются пускатели на различное рабочее напряжение, от 12 до 380 вольт. Катушки легко меняются, поэтому пускатели достаточно ремонтопригодные и наиболее слабым звеном является именно катушка. Кроме этого, у пускателя имеются также подвижные и неподвижные контакты, как силовые, так и управляющие. Подвижные контакты располагаются на подвижной части магнитного пускателя.

Когда катушка обесточена, подвижные контакты находятся в разомкнутом состоянии за счет действия пружины. Когда нажимается кнопка «Пуск» на катушке появляется напряжение. В результате подвижная часть сердечника притягивается, а вместе с ней и подвижные контакты. Соединяясь с неподвижными контактами, образуется электрическая цепь, в результате чего на управляющем устройстве (электродвигателе) появляется рабочее напряжение: двигатель запускается. Это можно увидеть на картинке ниже.

Так выглядит в разобранном виде

Когда нажимается кнопка «Стоп», напряжение на катушке исчезает и верхняя, подвижная часть, за счет действия пружины, возвращается в исходное состояние. Контакты размыкаются, электрическая цепь пропадает, как и напряжение на электродвигателе: электрический двигатель останавливается. Электромагнит срабатывает, как от постоянного, так и от переменного напряжения, главное, чтобы катушка была рассчитана на рабочее напряжение.

Бывают пускатели с нормально замкнутыми и нормально разомкнутыми контактами, при этом последние наиболее распространенные и наиболее востребованные.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.

Три способа управления однофазными асинхронными двигателями

Каждый день инженеры проектируют системы, в которых используются асинхронные двигатели с однофазным питанием. В свою очередь, управление скоростью однофазных двигателей желательно в большинстве применений, так как это не только обеспечивает требуемую скорость, но и уменьшает потребление электроэнергии, и снижает уровень акустического шума.

Большинство серийно выпускаемых однофазных двигателей не реверсивные, т.е. они разработаны, чтобы вращаться только в одном направлении. Изменить направление их вращения можно только с помощью дополнительных средств: добавочной обмотки, внешних реле и переключателей, механического редуктора и т.д. Так же, если позволяет конструкция двигателя, реверсировать его можно с помощью преобразователей для регулировки скорости.

Существует множество разновидностей асинхронных двигателей с однофазным питанием. Конструкция и принцип их действия подробно описаны в литературе по электромеханике. Наиболее распространенным типом является двигатель с двумя статорными обмотками, одна из которых имеет в своей цепи постоянно-включенный рабочий конденсатор, который обеспечивает сдвиг тока в обмотках на 90 электрических градусов для образования вращающегося магнитного поля. Такой двигатель называется конденсаторным. О нем и пойдет речь в данной статье.

Основным способом плавной регулировки скорости конденсаторного однофазного двигателя является частотный метод, реализуемый с помощью трехфазных или однофазных ШИМ-инверторов (преобразователей частоты), а также метод фазовой регулировки напряжения с помощью тиристорных регуляторов мощности. Рассмотрим эти методы подробнее.

Вариант 1. V/F управление с помощью однофазного ШИМ-инвертора

На выходе инвертора, состоящего из четырех IGBT-транзисторов (рис.1), формируется однофазное напряжение с переменной частотой и среднеквадратичным значением с линейной зависимостью V/F (вольт-частотная характеристика). За счет конденсатора в обмотке двигателя получается поле, близкое к круговому. Данный способ управления реализуется с помощью специализированных преобразователей частоты, которые разработаны исключительно для управления однофазными двигателями. В них, как правило реализованы специальные алгоритмы, управления двигателем, обеспечивающие устойчивый пуск и стабильную работу в заявленном диапазоне частот.

Регулировать частоту можно, как вниз, так и вверх от номинальной, но в отличие от частотно-регулируемых трехфазных приводов, диапазон регулирования однофазного двигателя меньше. Оно, как правило, не превышает 1:10, за счет того, что емкостное сопротивление напрямую зависит от частоты.

К основным достоинствам данного метода управления можно отнести: 1) простоту ввода в эксплуатацию, т.к. не требуется конструктивных изменений двигателя; 2) гарантированно надежную и устойчивую работу, так как частотный преобразователь специально разработан для таких двигателей и в нем учтены все особенности их эксплуатации; 3) хорошие характеристики управления и возможности, присущие большинству преобразователей частоты (аналоговые и дискретные входы/выходы, ПИД-регулятор, предустановленные скорости, коммуникационные интерфейсы, защитные функции, и т.д.).

К недостаткам относится: 1) только однонаправленное вращение (невозможность без внешних коммутирующих устройств реверсировать двигатель); 2) достаточно высокая стоимость частотных преобразователей для однофазных двигателей, так как в них используются IGBT-модули со значительным запасом по току (например, в однофазном частотнике мощностью 1.1кВт используется IGBT-модуль такой же как в трехфазном на 2.2кВт) и из-за ограниченности предложения на рынке.

Читать еще:  Хотите купить заднюю бабку токарного станка в России?

Вариант 2. V/F управление с помощью трехфазного ШИМ-инвертора

В данном случае используется стандартный преобразователь частоты с мостовой схемой IGBT-транзисторов (рис.2), формируемый на выходе трехфазное напряжение с фазовым сдвигом на 120 градусов. Обе обмотки однофазного двигателя и их средняя точка подключаются ко трем выходным фазам инвертора. Конденсатор, при этом, из схемы должен быть исключен. Так как обмотки геометрически сдвинуты на 90 градусов , а напряжение, прикладываемое к ним – на 120 электрических градусов, то полученное поле не будет круговым, и как следствие, момент будет пульсирующим. Причем среднее его значение за период будет меньше (рис.2), чем в случае питания от напряжений со сдвигом 90 гадусов.

При схеме подключения на рис.2 действующее напряжение на главной обмотке (Vгл) будет равно разности напряжений фаз A и C, а напряжение на дополнительной обмотке (Vдоп) = Vb-Vc. Изменяя порядок коммутации IGBT-транзисторов, можно легко изменять чередование напряжение на обмотках, а следовательно и направление вращения двигателя (рис.3) без каких-либо дополнительных аппаратных средств.

Здесь стоит отметить, что не любой преобразователь частоты подойдет для управления однофазным двигателем, так как токи в фазах будут не симметричны, и в случае наличия защиты от асимметрии выходных фаз, работа преобразователя будет блокироваться. Как впрочем, и не любой конденсаторный двигатель подойдет для данного способа, так как у некоторых типов двигателей весьма затруднительно или невозможно убрать емкость из дополнительной обмотки, и дополнительная обмотка как правило выполнена более тонким проводом, что при отсутствии конденсатора может привести к её перегреву и межвитковому замыканию.

Иногда на свой страх и риск используют подключение однофазного двигателя с конденсатором к трехфазному инвертору, что большинством производителей частотных преобразователей запрещено. В этом случае надо выбирать частотник со значительным запасом по току по отношению к двигателю, в частотнике не должно быть защиты от обрыва/перекоса выходных фаз, и надо помнить, что при определенной частоте может возникнуть электрический резонанс в контуре конденсатор-обмотка двигателя, что приведет к его повреждению.

Итак, достоинствами метода являются: 1) доступность на рынке и достаточно низкая цена преобразователей частоты с трехфазным выходом; 2) возможность реверсивной работы; 3) хороший диапазон регулирования скорости и возможности, присущие большинству преобразователей частоты (аналоговые и дискретные входы/выходы, ПИД-регулятор, предустановленные скорости, коммуникационные интерфейсы, защитные функции, и т.д.).

Недостатки метода: 1) пониженный и пульсирующий момент двигателя, повышенный его нагрев; 2) не все преобразователи частоты и конденсаторные двигатели годятся для данного метода, требуется предварительный анализ характеристик преобразователя и конструкции двигателя. К тому же, большинство производителей частотных преобразователей в своих инструкциях запрещают подключение однофазных двигателей, и в случае поломки могут снять с изделия свои гарантийные обязательства.

Вариант 3. Фазовая регулировка напряжения с помощью тиристорного регулятора

Отсутствие до недавнего времени доступного и качественного преобразователя частоты для однофазных двигателей приводило к поиску других решений, одно из которых — изменение напряжения статора при неизменной его частоте.

На выходе тиристорного регулятора, состоящего из двух, включенных встречно-параллельно тиристоров (рис.4), формируется однофазное напряжение с постоянной частотой и регулируемым среднеквадратичным значением за счет изменения угла (альфа) открывания тиристоров.

Критический момент при таком регулировании будет снижаться пропорционально напряжению, критическое скольжение в останется неизменным.

Проведём оценку метода.
1) Регулирование однозонное – только вниз от основной скорости.
2) Диапазон регулирования в разомкнутом контуре, примерно, 2:1; стабильность скорости удовлетворительная; плавность высокая.
3) Допустимая нагрузка резко снижается с уменьшением скорости.
4) Рассмотренный способ регулирования неэффективен для использования в продолжительном режиме. Даже для самой благоприятной нагрузке — вентиляторной необходимо двух-трехкратное завышение установленной мощности двигателя, интенсивный внешний обдув, так как, допустим, если двигатель вращается 750 об/мин (когда синхронная частота 1500) — скольжение 0,5, и 0,5 мощности идет в нагрузку, а 0,5 — греет ротор (не считая других потерь).
5) Тиристорный регулятор — простое устройство в 3-4 раза более дешевое, чем преобразователь частоты, и именно эта особенность системы регулировки скорости напряжением приводила в ряде случаев к её неоправданному применению.

Заключение

Все три способа имеют право на существование, только выбор одного из них нужно делать исходя из конкретной прикладной задачи.

Безусловно, наиболее универсальным и наименее трудоемким на стадии проектирования является первый метод – регулирование с помощью преобразователя частоты с однофазным выходом. Этот способ годится для большинства применений и помимо конденсаторных двигателей его можно использовать и для управления однофазными двигателями с экранированными полюсами.

Второй способ – регулирование с помощью преобразователя частоты с трехфазным выходом, — требует предварительного изучения, как преобразователя, так и двигателя на предмет возможности совместной работы. И рекомендуется всегда выбирать преобразователь с существенным запасом мощности по отношению к двигателю. Этот метод оптимален в реверсивных приложениях.

Третий способ – регулирование скорости изменением напряжения, — может в ряде случаев использоваться для кратковременного снижения скорости маломощных вентиляторов и насосов, и весьма полезен и эффективен для снижения пусковых токов, для экономии энергии при недогрузках. Этот метод является самым бюджетным, но как подчеркивалось ранее, тиристорные регуляторы не должны применяться для регулирования скорости сколько-нибудь мощных двигателей, приводящих во вращение машины, работающие в продолжительном режиме.

Принцип работы электрического коллекторного двигателя

Тем, кто понимает принцип работы коллекторного двигателя, его запуск не покажется непосильной задачей. Но мы коротко расскажем, чтобы понять суть проблемы.

Коллектор электродвигателя имеет насколько секций. Это медный барабан, разбитый изолирующими перемычками на ровные ряды. Все секции имеют выводы, установленные четко на противоположных сторонах, то есть сюда и подходят обе щетки. При работе одна секция получает электропитание, и в катушке появляется поле. Давайте рассмотрим, к чему приводит этот процесс.

Прямое подключение ротора и статора

В данном случае поле распределяется таким образом, что вал вращается по часовой стрелке. Заряды одинаковых полярностей ротора и статора отталкиваются, а разных – притягиваются. Когда секция проходит определенное расстояние по кругу, щетки переходят на следующую секцию, и работает уже она. И так далее, пока есть электропитание.

Если щетки подключить навстречу статору, то расположение зарядов на роторе изменится на противоположное. Вал двигателя в этом случае вращается против часовой стрелки. Как и в первом случае, одинаковые заряды притягиваются, а разные отходят.

Как правило, для изменения вращения электродвигателя стиральной машины устанавливаются специальные силовые реле или контакторы. Если необходимо, то ротор подключается навстречу статору, благодаря чему появляется реверс. Для нас это означает одно: когда вал вращается не так, как нужно, то надо поменять направление подключения обмоток.

Как выглядит разъем или коннектор электрического двигателя

Чаще всего коннектор электродвигателя стиральной машины похож на тот обычный пластиковый разъем, который очень знаком компьютерщикам. Он довольно просто подсоединяется, но отсоединить его назад практически невозможно. Как правило, для этой цели себе помогают шлицевой отверткой. Обе половинки обычно имеют 10 контактов, при этом определенная их часть чаще всего не задействована.

По два на статор и ротор, 4 клеммы представляют собой конец обмотки разъема. Также с неподвижной части зачастую выведена и середина. Это дает возможность реализовать различные режимы работы двигателя. Как правило, управление скоростью происходит с помощью изменения угловой отсечки напряжения. Что это обозначает?

  • Представьте, что из электрической розетки выходит ровная синусоида (хоть, на самом деле это не так) с постоянным значением 220 Вольт. Как правило, для двигателя это много. То есть, часть синусоиды отсекается каким-то силовым ключом. К примеру, тиристором.
  • Так, действующее напряжение значительно падает. Например, на Самсунгах может находиться корейский электродвигатель с иероглифами, где русскими буквами указано, что при отжиме используется 300 Ватт при входящем токе 3 Ампера, а на стирку используется 40 Ватт (ток 4 Ампера). Что это означает – ток выше, а потребление ниже? Нет. Это различный угол отсечки. В первом варианте действующее напряжение 300/3=100 Вольт, а в другом – только 40/4=10 Вольт. Вот таким образом, и нам будет необходимо производить управление скоростью, если это нужно. Или подключать напряжение через схему трансформатора.
Читать еще:  Выбираем строгальный станок по металлу — устройство и применение

Скорость вращения электродвигателя

Что относительно скорости вращения, то ее может оценить тахогенератор (это даже больше тахометр). Он является, по большому счету, источником импульсов, которые следуют одновременно с валом, и на него приходится не менее двух выходов коннектора. Но тут есть одна небольшая проблема: в схеме тахогенератора находятся движущиеся части. А это огромный недостаток, в плане надежности оборудования.

Поэтому, как правило, используется датчик Холла. Это так называемая планшетка из чувствительного материала, которая реагирует на приближение магнитного электрического поля. Относительно скорости вращения вала меняется частота прохождения импульсов. При этом планшетка может прослужить практически вечно, так как механического контакта здесь нет, как и подвижных элементов. Датчик Холла устанавливается не только для регулирования скорости вращения вала с целью функции стирки, он также участвует во взвешивании белья.

Смысл в том, что после замачивания вещи намокают, и от полученного веса будет зависеть скорость вращения барабана. По заданным формулам и схемам стиральная машина определяет массу белья. Не забывайте, что датчик Холла, как правило, имеет три выхода:

  • два выхода – это питание;
  • третий выход – снимает импульсы.

Защита от перегрева

Во многих электродвигателях находится защита от перегрева. Как правило, она реализуется с помощью простейшего термопредохранителя. Когда случается перегрев, то предохранитель просто выходит из строя. На него приходится два выхода. Они необходимы для регулирования целостности схемы электрической цепи. Контролировать это может главный процессор.

Непосредственно термопредохранитель зачастую устанавливается на корпусе мотора машины. Обычно для стиральных машин двигатель изготавливается таким образом, что по контуру появляется нечто похожее на магнитный провод (набор металлических пластин). Термопредохранитель может находиться или там, или под изоляцией обмоток. Для нашей задачи он не сильно важен, если, естественно, не боитесь, что сгорит электродвигатель. В действительности, именно с помощью этой цепи нужно подключать оборудование. Термопредохранитель обязан находиться последовательно с обмотками.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×