Termokings.ru

Домашний Мастер
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Круглошлифовальный станок – эффективное врезное и продольное шлифование деталей

Описываемые установки предназначены для чистовой и обдирочной обработки изделий посредством использования алмазных и шлифовальных кругов. И первые, и вторые гарантируют малую шероховатость обработанной поверхности, а также достойную точность геометрической формы и размеров детали.

В большинстве случаев на такие агрегаты поступают заготовки, которые уже прошли предварительную термическую или механическую обработку. Иными словами, на круглошлифовальных агрегатах выполняют финальную операцию шлифования деталей, побывавших на сверлильном, фрезерном, токарном либо другом станке.
По виду базирования (под этим термином понимают придание заготовке необходимой конфигурации в пространстве по отношению к той или иной системе координат) все круглошлифовальные установки подразделяют на три типа:

  • патронные: заготовка в них располагается в патроне;
  • центровые: заготовка в центрах;
  • бесцентровые: базирование обрабатываемой конструкции по несколькими либо одной поверхности подвергаемой шлифованию.

А вот непосредственно схем базирования существует две:

  • на башмаках (опоры неподвижного вида) с торцовой ведущей опорой;
  • с опорным ножом на ведущем круге.

В зависимости от того, каким образом относительно круга осуществляются основные передвижения детали, различают врезное, проходное и комбинированное шлифование. Проходная обработка обеспечивает:

  • отличное качество поверхности после шлифовки;
  • малое тепловыделение;
  • равномерный износ шлифовального круга.

Проходное шлифование рекомендовано для существенных по длине цилиндрических поверхностей, так как в процессе обработки показатель их цилиндричности практически не изменяется. При врезном же виде шлифования геометрическая точность поверхности, которая подвергается обработке, напрямую зависит от степени износа круга. Оно чаще всего применяется для обработки фасонных и ступенчатых форм, поверхностей с буртами, коротких шеек, а также тогда, когда требуется одновременная обработка торца и шейки детали.

Комбинированное шлифование характеризуется важной особенностью. Заключается она в том, что цилиндрическая часть заготовки шлифуется по технологии проходного шлифования, а после этого осуществляется обработка торца. Отметим: перемещение детали в продольном направлении при бесцентровом базировании ограничивается упором (торцовым).

Виды металлорежущего оборудования

Металлорежущие станки в зависимости от назначения подразделяются на девять основных групп. К ним относятся следующие устройства:

  1. токарные — все разновидности станков токарной группы (в маркировке обозначаются цифрой «1»);
  2. сверлильные и расточные — станки для выполнения сверлильных операций и расточки (группа «2»);
  3. шлифовальные, полировальные, доводочные — металлорежущие станки для выполнения доводочных, шлифовальных, заточных и полировальных технологических операций (группа «3»);
  4. комбинированные — металлорежущие устройства специального назначения (группа «4»);
  5. резьбо- и зубообрабатывающие — станки для обработки элементов резьбовых и зубчатых соединений (группа «5»);
  6. фрезерные — станки для выполнения фрезерных работ (группа «6»);
  7. долбежные, строгальные и протяжные — металлорежущие станки различных модификаций соответственно для строгания, долбежки и протяжки (группа «7»);
  8. разрезные — оборудование для выполнения отрезных работ, в том числе пилы (группа «8»);
  9. разные — примеры таких металлорежущих агрегатов — бесцентрово-обдирочные, пилонасекательные и другие (группа «9»).

Группы и типы металлорежущих станков (нажмите, чтобы увеличить)

Кроме того, металлорежущие станки могут относиться к одному из следующих типов:

  • много- и одношпиндельные, специализированные (полуавтомат и автомат), копировальные многорезцовые, револьверные, сверлильно-отрезные, карусельные, лобовые и специальные типы токарных станков;
  • оборудование для выполнения технологических операций расточки и сверления: много- и одношпиндельные, полуавтоматы, сверлильные станки вертикального, горизонтального и радиального типа, расточные устройства координатного, алмазного и горизонтального типа, разные сверлильные модели;
  • различные типы шлифовальных станков (плоско, внутри- и круглошлифовальные), обдирочное и полировальное оборудование, заточные и специализированные агрегаты;
  • типы металлообрабатывающих станков, предназначенные для обработки элементов зубчатых и резьбовых соединений: зуборезные (в том числе предназначенные для обработки колес конической формы), зубострогальные — для цилиндрических зубчатых колес, зубофрезерные, резьбонарезные, резьбо- и зубошлифовальные, зубоотделочные, проверочные, резьбо-фрезерные, устройства для обработки торцов зубьев и элементов червячных пар;
  • металлорежущие станки, относящиеся к фрезерной группе: консольные (вертикальные, горизонтальные и широкоуниверсальные модели) и бесконсольные (вертикальные устройства, продольные, копировальные и гравировальные модели);
  • строгальное оборудование и модели подобного назначения: продольные станки, на которых установлена одна или две стойки; горизонтальные и вертикальные протяжные устройства;
  • разрезное оборудование: оснащенное абразивным кругом или гладким металлическим диском, резцом или пилами различной конструкции (ленточными, дисковыми, ножовочными); правильно-отрезные типы металлообрабатывающих станков;
  • остальные типы станков для обработки металлических заготовок: делительные, используемые для осуществления контроля сверл и шлифовальных кругов, опиловочные, балансировочные, правильно- и бесцентрово-обдирочные, пилокасательные.

Вертикально-фрезерный станок — один из представителей обширной фрезерной группы

Классификация металлорежущих станков также осуществляется по следующим параметрам:

  • по весу и габаритным размерам оборудования: крупное, тяжелое и уникальное;
  • по уровню специализации: станки, предназначенные для обработки заготовок одинаковых размеров — специальные; для деталей с разными, но однотипными размерами — специализированные; универсальные устройства, на которых можно выполнять обработку деталей любых размеров и форм;
  • по степени точности обработки: повышенной — П, нормальной — Н, высокой — В, особо высокой точности — А; также различают станки, на которых можно выполнять особо точную обработку — С, их еще называют прецизионными.

Возможности и технологии

Токарно-винторезный станок предназначен для выполнения ряда операций:

  • Обточка и расточка цилиндрических и конических поверхностей.
  • Расточка фасонных поверхностей.
  • Сверление и развертка отверстий.
  • Зенкерование отверстий.
  • Подрезка и обработка торцов.
  • Отрезание заготовки.
  • Нарезание резьбы.

Кратко остановимся на основных технологиях обработки. При обточке наружных цилиндрических поверхностей используется проходной резец. Припуск по длине заготовки составляет от 7 до 12 мм для отрезания и обработки торцов. При торцевании используются несколько типов инструмента – подрезные, упорные и прямые проходные резцы.

Читать еще:  Пресс подборщик прф 145: технические характеристики

На токарно-винторезном станке можно прорезать канавки требуемой глубины. Для этого необходима минимальная скорость вращения шпинделя и специальный резец. Аналогично производится и отрезание детали от заготовки. Отрезной резец вырезает канавку до диаметра 2-2,5 мм, и деталь отламывается под собственным весом.

Маркировка станков

Классификация оборудования, предназначенного для обработки заготовок из металла, предполагает, что, увидев его маркировку, любой специалист сразу сможет сказать, какой металлорежущий станок перед ним находится. Такая маркировка содержит в себе буквенные и цифровые символы, которые обозначают отдельные характеристики устройства.

Первая цифра — это группа, к которой принадлежит металлорежущий станок, вторая — разновидность устройства, его тип, третья (а в некоторых случаях и четвертая) — основной типоразмер агрегата.

Расшифровка маркировки металлорежущих станков

После цифр, перечисленных в маркировке модели, могут стоять буквы, по которым определяется, обладает ли модель металлорежущего станка особыми характеристиками. К таким характеристикам устройства может относиться уровень его точности или указание на модификацию. Часто в обозначении станка букву можно встретить уже после первой цифры: это свидетельствует о том, что перед вами модернизированная модель, в типовую конструкцию которой были внесены какие-либо изменения.

В качестве примера, можно расшифровать маркировку станка 6М13П. Цифры в данном обозначении свидетельствуют о том, что перед нами фрезерный станок («6») первого типа («1»), который относится к 3-му типоразмеру («3») и позволяет выполнять обработку с повышенной точностью (буква «П»). Литера «М», присутствующая в маркировке данного устройства, свидетельствует о том, что оно прошло модернизацию.

МРС Шлифовальной группы

Общие сведения о шлифовальных станках

Шлифовальные станки (ШС) работают абразивным инструментом. В парке МРС они составляют до 20%, а в массовом производстве доля ШС достигает 60%.
С помощью ШС выполняются высокопроизводительные операции по обдирке отливок, отрезке, шлифованию из целого прутка высоколегированного материала, спиральных и шпоночных канавок, специальных и сложных профилей и т.д.
Кинематический процесс шлифования на всех типах ШС осуществляется путем вращения шлифовального круга и вращения или перемещения обрабатываемой заготовки относительно рабочей поверхности круга (периферии или торца). Относительное перемещение заготовки проводиться по прямолинейной или дуговой траектории.
Основные кинематические цепи станков:

      — вращение шлифовального круга от индивидуального привода,
      — продольное перемещение стола от гидравлики,
      — вращение обрабатываемой заготовки или стола от индивидуального привода,
      — поперечная подача шлифовального круга или заготовки – электромеханическая или гидравлическая,
      — подача круга на глубину – электромеханическая или гидравлическая,
      — правка круга – ручная, гидравлическая, электромеханическая.
Особенности шлифовальных станков для скоростного и обдирочного шлифования

При проектировании станков, работающих по технологии высокоскоростного шлифования (ВСШ) предусматривается использование:
— шлифовальных кругов стандартных типов (из корунда или карбида кремния на керамической или полимерной связке), окружные скорости которых составляют 60-120 м/с,
— шлифовальных кругов эльборовых на сверхтвердой смазке, окружные скорости которых составляют до 150 м/с,
— стальных кругов с покрытием из эльбора на гальванической связке, окружные скорости которых составляют до 250 м/с.
Эффективность ВСШ и, особенно, обдирочного шлифования (процессов с очень высокой тепловой напряженностью) в значительной степени зависят от отвода тепла из зоны обработки.
ШС оснащаются устройствами для динамической балансировки кругов и текущего контроля их вибрационных характеристик.
По мере износа шлифовальных кругов в процессе работы снижаются их окружные скорости и прочность. Поэтому допускается износ кругов не более 20% диаметра.
В связи с высокой вероятностью разрыва кругов при работе, в станках предусматривают надежную защиту зоны обработки и блокировку открывания защитного кожуха.
Для обеспечения высокой точности обработки ШС оснащаются приборами активного контроля размера и системы адаптивного управления (в большинстве случаев – по мощности главного привода).
При работе с повышенными режимами шлифования для лучшего отвода шлама необходима подача увеличенного количества СОЖ в зону резания под давлением 0,5-1 Мпа.
По сравнению с традиционными ШС, станки для ВСШ имеют ряд особенностей. Так, у них увеличена мощность привода вращения круга, обеспечивающая большие скорости съема металла, увеличена скорость врезания (подача на глубину) для получения больших скоростей съема металла, увеличена частота вращения (или продольного перемещения для плоскошлифовального станка) детали для обеспечения оптимального отношения скорости круга к скорости детали (стола):

Круглошлифовальные станки

Круглошлифовальные станки (КШС) предназначены для обдирочной и чистовой обработки наружных поверхностей. В станках используются шлифовальные и алмазные круги, которые обеспечивают высокую точность размеров и геометрической формы и малую шероховатость поверхностей детали.

В зависимости от основных перемещений заготовки относительно круга различают шлифование: осциллирующее (проходное), врезное и комбинированное. При осциллирующем шлифовании круг изнашивается более равномерно и не оказывает заметного влияния на прямолинейность образующей. Достигается наилучший параметр шероховатости, минимальное тепловыделение. При врезном шлифовании изнашивание круга непосредственно влияет на форму образующей. Врезное шлифование применяют для обработки поверхностей, ограниченных буртами, ступенчатых и фасонных форм, также при необходимости одновременно шлифовать шейку и торец. При комбинированном шлифовании цилиндрическая часть шлифуется осциллирующим методом, а торцовая поверхность – врезным.

Рис. 4.35. Основные схемы шлифовальных станков: 1 – передняя стойка; 2 – задняя стойка; 3 и 5 – столы; 4 – позиционир осевого положения круга

Читать еще:  Электроискровая и электроимпульсная обработка металла

Метод шлифования, способ базирования и назначение станка определяют его компоновку. Основные компоновочные схемы приведены на рис. 4.35, на котором дуговыми стрелками отмечены узлы, которыми проводится регулировка и настройка углового положения, прямолинейными отрезками – линейного положения детали относительно круга.

Компоновки станков, в которых относительное перемещение вдоль оси заготовки и подача осуществляется кругом, применяются достаточно редко для обработки заготовок большого диаметра и массы.

Станок может дополнительно комплектоваться для внутреннего шлифования.

Внутришлифовальные станки

Внутришлифовальные станки (ВШС) предназначены для круглого внутреннего шлифования сквозных и глухих отверстий с образующей прямолинейной и конической формы. На этих станках можно также проводить подшлифовку торцов.

На рис. 4.36 приведены схемы внутреннего шлифования, на которых указаны необходимые движения.

Рис. 4.36. Схемы внутреннего шлифования

Наиболее распространенными являются схемы обработки, когда деталь вращается вокруг оси обрабатываемой поверхности, поперечная подача осуществляется перемещением либо шлифовального круга, либо детали.

При шлифовании открытых (сквозных) отверстий с прямолинейной образующей применяется относительное прямолинейное перемещение вдоль оси круга — осцилляции Ds1. Для закрытых и профильных поверхностей шлифование является методом врезания (без движения Ds2).

Качество обрабатываемых деталей определяется опорами шпинделя изделия и шлифовального круга.

Плоскошлифовальные станки

Различают две основные группы плоскошлифовальных станков (ПШС): шлифование периферией круга (станки с горизонтальным расположением шпинделя) и шлифование торцом круга (станки с вертикальным расположением шпинделя).

По степени автоматизации эти станки подразделяются на универсальные, полуавтоматические и автоматические.

Метод шлифования периферией круга обеспечивает высокую точность обработки, но малопроизводителен. Метод шлифования торцом круга высокопроизводителен вследствие большой дуги контакта круга с деталью. Однако благодаря большим нагрузкам в зоне резания происходит нагрев детали, снижающей точность обработки.

Станки бесцентрового шлифования

Использование при обработке в качестве базовой шлифуемую поверхность позволяет резко увеличить жесткость системы инструмент-деталь и повысить производительность и точность обработки. Для ряда деталей это единственный способ обеспечения требуемой точности.

Бесцентровое шлифование используется как черновой способ обработки валов и прутков, так и в качестве отделочной операции для прецизионных деталей из различных материалов с точностями менее 1 мкм в диапазоне диаметров 0,5-320 мм и более и длиной до нескольких метров. В практике встречается несколько схем обработки деталей методом бесцентрового шлифования.

Рис. 4.37. Схемы бесцентрового шлифования: 1 – шлифовальный круг; 2 — заготовка; 3 – ведущий круг; 4 – поддерживающий нож

Для примера на рис. 4.37 показаны две схемы шлифования для наружной и внутренней обработки деталей.

При наружном шлифовании заготовка 2 размещается между шлифовальным кругом 1 и ведущим кругом 3, опираясь на поддерживающий нож 4.

Круги вращаются в одном направлении:

При внутреннем шлифовании заготовка 2 типа колес базируется на роликах 1 и 4. Вращение заготовки осуществляется за счет прижима роликов к ведущему кругу 3.

Основные узлы и компоненты

Главный привод — подает болванке или резцу движение соответствующих параметров для выполнения резания. Как правило, движение вращения поступает через главный привод на шпиндель, где зафиксирована болванка или резец. Чтобы контролировать скорость движения главного привода используют:

  • коробки передач;
  • коробки скоростей;
  • вариаторы;
  • бесступенчатые системы регулировки.

Привод подачи — он используется для передвижения резца вдоль или вокруг болванки, придавая ей необходимую форму.

Привод позиционирования — его задача передвижение механизма из одной точки в другую. Он задействуется, например, при выработке ряда параллельных выемок, отверстий или поверхностей, находящихся на одной детали. В токарных и фрезерных станках с ЧПУ главный привод сочетает в себе эту функцию.

Несущая система — это набор определенных, скрепленных между собой деталей. Стыки между ними могут быть фиксированными и подвижными. Этот узел отвечает за взаиморасположение обрабатываемой детали и инструмента во время работы.

Манипуляторы — автоматизируют вспомогательные процессы: зажим, подачу, поворот болванки, замену резца, отведение пыли. Современные станки с программным управлением оснащаются несколькими манипуляторами или одним универсальным, который управляется ЧПУ.

Узел измерительных и контрольных приспособлений — создан для контроля над выполнением основных задач. Эти устройства следят за состоянием основных механизмов, размерами болванки и готовой детали. В наиболее автоматизированных станках данные контроля передаются в узел управления, который подает сигналы для корректировки.

Классификация

Токарные станки с ЧПУ классифицируются согласно качеству и характеристикам.

Масса

Согласно этому параметру, автоматические станки бывают:

  • легкими (не превышают 1 т);
  • средними (достигают 10 т) – к таковым относится ТС23;
  • тяжелыми (до 100 т) – к примеру, Siemens 808D;
  • уникабельными (от 100 т и более) – как РМЦ 1000, ZMM LCC 800/1500 CNC.

Точность обработки

Подобные агрегаты обеспечивают непревзойдённое качество обработки деталей. Согласно этому, их можно разделить на следующие виды точности:

  • Н – нормальная;
  • П – повышенная;
  • В – высокая;
  • А – особо высокая;
  • С – мастер-станки.

Сфера использования

Автоматические станки применяются во многих областях промышленности. С их помощью производятся как уникальные изделия, так и серийные. В соответствии с этим, они классифицируются следующим образом:

  • универсальные – превосходное решение для изготовления небольших партий изделий, чаще всего используются в условиях малых производств;
  • специализированные – применяются на предприятиях, выпускающих однотипные детали в большом количестве;
  • специальные – устанавливаются в цехах, специализирующихся на серийном выпуске одной детали.
Читать еще:  Как гнуть арматуру для фундамента видео

Положение шпинделя

Является еще одной особенностью, позволяющей классифицировать автоматические станки. Они бывают:

  • горизонтальными;
  • вертикальными;
  • наклонными;
  • комбинированными.

Виды и классификация станков с ЧПУ

Существует большое количество агрегатов с ЧПУ, которым отделена определенная роль.

Функции и характер работ

Станки делятся на виды согласно своим функциям и характера работ:

  • Токарные. Предназначены для обработки заготовок, путем вращения и резания металла;
  • Фрезерные станки. Используются для обработки плоских и фасонных поверхностей, деревянных, металлических, а также иных заготовок;
  • Сверлильные. Служит для сверления глухих и сквозных отверстий в цельном изделии, закручивании или раскручивания и так далее;
  • Шлифовальные. Используют для шлифовки изделия;
  • Другие.

Классификация механических устройств с числовым программным управлением происходит в зависимости от их качеств и характеристик, различие которых довольно существенно.

Масса

Исходя из массы, станок с ЧПУ может быть:

  • Легкий (вес до 1 т);
  • Средний (вес до 10т);
  • Тяжелый (вес до 100т);
  • Уникабельный (вес более 100т).

Степень точности

Агрегаты с числовым программным управлением обладают высокой жесткостью и точностью, что дает возможность обеспечить высокое качество обработки изделия. По степени точности металлообрабатывающие машины делятся:

  • Н – нормальной точности;
  • П – повышенной точности;
  • В – высокой точности;
  • А – особо высокой точности;
  • С – особо точные (мастер – станки).

Уровень универсальности

Область применения устройств, на которых применяется числовое программное управление довольно обширна. Они используются для изготовления, как единичных изделий, так и массового производства. Исходя из этого, можно выделить еще одну категорию классификации по уровню универсальности машины:

  • Универсальные. Они используются для изготовления небольших партий деталей или одной единицы продукта, имеют широкое распространение на небольших предприятиях;
  • Специализированные. Этот вид станков используют на специализированных предприятиях, так как они изготавливают детали одного типа большими партиями;
  • Специальные. Эти станки производят одну деталь, как правило, используют для массового производства.

Расположение шпинделя

Еще одной важной особенностью, по которой можно классифицировать металлообрабатывающие устройства – это расположение шпинделя. Оно бывает:

  • Горизонтальное;
  • Вертикальное;
  • Наклонное;
  • Комбинированное.

Приведенная классификация не является исчерпывающей, приборы классифицируют еще по типоразмерам, назначением, но представленное описание даст вам оптимальное представление о разновидностях станков с чпу.

Типы шпиндельных узлов

Эти узлы классифицируются следующим образом:

  • типу привода;
  • виду и количеству опор;
  • связи с приводом;
  • типу отверстия;
  • конструктивному исполнению ШУ;
  • способу закрепления заготовки, обрабатывающего инструмента, дополнительной оснастки;
  • марки используемой стали;
  • размерам всего агрегата;
  • количеством одновременно закреплённого инструмента;
  • способам смазки.

Шпиндели и шпиндельные узлы приводятся в движение с помощью ременной или зубчатой передачи. Выбор способа привода, а следовательно конструкция шпиндельного узла, определяется необходимой скоростью вращения, передаваемой мощности, кинематической схемой станка.

Ременные передачи обеспечивают плавный ход, снижают динамические нагрузки, обеспечивают передачу вращения на большие расстояния между двигателем и шпинделем, не требуют постоянной смазки.

Зубчатая передача достаточно компактна, способна обеспечить постоянное передаточное отношение, больший крутящий момент.

Шпиндельный узел токарного станка установлен на две опоры. У агрегатов, предназначенных для изготовления крупногабаритных и массивных деталей, дополнительно устанавливают третью опору. Жесткость конструкций зависит от системы крепления и расстояния между ними. Применение третьей опоры вызвано необходимостью обеспечить дополнительную жёсткость крепления заготовки и демпфирования возможной нестабильности колебаний.

В станках, предназначенных для выполнения большого числа операций, концы шпинделей выполнены в форме цилиндра. В каждом из них размещается скалка, которая свободно перемещается вдоль продольной оси. Она заканчивается отверстием, выполненным на конус.

Фрезерные станки снабжены оправкой, которая крепится специальной тягой. Вращение передается приспособлениями, которые называются сухарями. При установке режущего инструмента их наконечник помещается в специальные пазы.

Все обрабатывающие агрегаты, предназначенные для проведения прутковых работ, оснащаются шпинделем, внутри которого располагается механизм. С его помощью производится надёжная фиксация и подача заготовки к месту обработки.

У шлифовальных станков наконечник шпиндельного узла снабжён хвостовиком. Его выполняют в форме конуса. К нему закреплена планшайба. На неё при помощи фланца крепится шлифовальный круг. Фланец имеет специальный паз, в который монтируются подвижные сухари. С их помощью производят балансировку круга.

В шпиндельных устройствах применяются два типа подшипников:

  • шариковые (устанавливаются в быстроходных малонагруженных агрегатах);
  • роликовые (в средних и тяжелых станках, где необходимо обеспечить повышенную жесткость).

В некоторых типах станков (например, агрегаты шлифовальные, расточные, для присадочного станка) используются гидродинамические подшипники. Они обеспечивают успешную работу узла при небольших изменениях скорости вращения в условиях небольших нагрузок.

Для обеспечения хорошей подвижности и легкости работы применяют способы подачи смазки трёх типов:

  • проточная под давлением (циркуляция обеспечивается специальным насосом);
  • система смазывания созданием так на «масляного» тумана;
  • применение густой консистенции.

Все системы обеспечивают хорошую смазку и сохранение температурного режима.

Первый способ обеспечивает надежность поступления масла в зону смазки. Это происходит благодаря насосу. Под давлением происходит качественный отвод тепла. Второй позволяет более равномерно распределять масляную жидкость, но может обеспечить только незначительный отвод тепла от вращающихся деталей. Кроме этого при нарушении герметизации в сальниках манжетах может произойти выброс воздушно масляной смеси.

По количеству одновременного закреплённого инструмента станки подразделяются на аппараты с одним узлом крепления и несколькими. Например, токарный станок марки ИТ 42 имеет револьверную головку с восемью элементами крепления.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×