Termokings.ru

Домашний Мастер
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модуль упругости бетона

Более подробно сущность модуля упругости, предела пропорциональности, предела прочности, нормальных напряжений, деформаций и других понятий рассматривается отдельно. Здесь лишь отметим, что для материалов, у которых предел пропорциональности незначительно меньше предела текучести, можно использовать линейную деформационную модель. Т.е. предполагать деформации прямо пропорциональными нормальным напряжениям.

Примером таких материалов являются стали различных марок. А вот бетон к таким материалам не относится. Более того, у бетона нет ярко выраженного предела пропорциональности и предела текучести. Диаграмма напряжений бетона при постепенном загружении выглядит приблизительно так:

Рисунок 324.1

Однако это далеко не единственная из возможных диаграмм напряжений бетона, так как на значение деформаций ε будут влиять не только нормальные напряжения σ, возникающие в поперечных сечениях, но и множество других факторов:

1. Класс бетона

Начальный модуль упругости бетона зависит от класса бетона. Значение начального модуля упругости можно определить по следующей таблице:

Таблица 1. Начальные модули упругости бетона (согласно СП 52-101-2003)

2. Время приложения нагрузки

При кратковременном действии нагрузки деформации бетона почти прямо пропорциональны напряжениям, кроме того такие деформации остаются упругими. При расчетах на кратковременное действие нагрузки (до 1-2 часов) значение приведенного модуля упругости на участках без трещин определяется по формуле:

где φb1 = 0.85 — для тяжелых, мелкозернистых и легких бетонов на плотном мелком заполнителе; = 0.7 — для поризованных и легких бетонов на пористом мелком заполнителе.

При длительном действии нагрузки того же значения, деформации начинают увеличиваться до некоторого предела, например при σ = Rb — до точки 1 на диаграмме напряжений. После снятия нагрузки пластические деформации εпл останутся (потому они пластическими и называются), а при повторном загружении до указанного предела деформации будут прямо пропорциональны напряжениям. Процесс нарастания пластических деформаций с течением времени при постоянных нормальных напряжениях называется ползучестью бетона.

Так как при длительном действии нагрузки диаграмма напряжений стремится к показанной на рисунке 324.1, то при расчетах необходимо учитывать нелинейность изменения деформаций при линейно изменяющихся напряжениях. К тому же в изгибаемых элементах нелинейному изменению деформаций препятствует сам материал. Напомню, нормальные напряжения в поперечных сечениях изгибаемых элементов прямо пропорциональны расстоянию от центра тяжести сечения, через который проходит нейтральная линия, до рассматриваемой точки. Таким образом различные слои бетона, работающие совместно, приводят к частичному перераспределению деформаций по высоте элемента, при этом перераспределенную эпюру деформаций можно условно рассматривать как линейную:

Рисунок 324.2

На рисунке 324.2 показана некоторая высота сжатой зоны сечения у, при которой нормальные напряжения σ будут прямо пропорциональны расстоянию от центра тяжести до рассматриваемой точки, это соответствует работе бетона в области условно упругих деформаций. При этом изменение деформаций можно рассматривать по зависимости, показанной на рисунке 324.2.а) или 324.2.б). Часто расчетами на прочность допускается наличие в сжатой области пластического шарнира, при котором изменяется эпюра напряжений и соответственно увеличивается значение деформаций:

Рисунок 324.3

На основании этого для упрощения расчетов обычно принимается двухлинейная (рис. 324.3. а) или трехлинейная (рис. 324.3.б) диаграмма состояния сжатого бетона. Согласно СП 52.101.2003 трехлинейная диаграмма выглядит так:

Рисунок 324.4

Еb1 — при кратковременном действии нагрузки принимается равным Eb, а при длительном действии нагрузки определяется по следующей формуле:

где φb,cr — коэффициент ползучести бетона, определяемый в зависимости от класса бетона и влажности окружающей среды. Таким образом учитывается третий фактор, влияющий на модуль упругости бетона:

3. Влажность воздуха

Значение коэффициента ползучести определяется по следующей таблице:

Таблица 2. Коэффициенты ползучести бетона

а значения деформаций εbo и εb2 при необходимости (если нормальные напряжения больше 0.6Rb,n) определяются по таблице 3:

Таблица 3. Относительные деформации бетона (согласно СП 52-101.2003)

4. На значение модуля упругости бетона также влияют температура окружающей среды и интенсивность радиоактивного излучения.

Значение начальных модулей упругости, приведенных в таблице 1, соответствует температуре окружающей среды +20±5 о С и нормальному радиационному фону. При изменении температуры в пределах ±20 от указанного значения влияние температуры на модуль упругости можно не учитывать. А при больших изменениях температуры следует учитывать еще и температурные деформации бетона. В целом уменьшение температуры приводит к увеличению модуля упругости, но и к повышению хрупкости материала, а увеличение температуры — к уменьшению модуля упругости и к увеличению пластичности материала.

А теперь попробуем выяснить, как все эти теоретические цифры можно применить на практике.

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

Читать еще:  Подгнил мауэрлат. Как провести ремонт не демонтируя полностью кровлю

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

От чего зависит величина?

Упругость раствора зависит от множества факторов. Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора. Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень. Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители. Учитывают не только интенсивность нагрузок, но и частоту.

Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C). Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный). Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.

Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.

Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций. Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.

От чего зависит упругость бетона

1. Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Что влияет на модуль упругости?

Рассмотрим, от чего зависит данная характеристика материала:

Таблица определения количества бетона в зависимости от марок цемента.

  1. Самое важное влияние имеют характеристики наполнителя. Можно увидеть, что зависимость, если изобразить ее в виде графика, является практически прямолинейной. Значение модуля будет ниже для нетяжелых бетонов, чем для бетона, имеющего крупные гранулы, такие, как щебень и гравий.
  2. Следующее влияние на рассматриваемую характеристику оказывает класс бетона. Для того чтобы определить класс, разработана специальная таблица. Нет необходимости рассматривать то, как она выглядит в настоящем виде, так как человек, занимающийся частной практикой, пользуется неполным ассортиментом материалов. В таблице даны сведения, содержащие прочность и модуль, посмотрев на которые, можно понять, что они прямо пропорционально зависят друг от друга. Зависимость постоянна и не меняется до 230° С, то есть практически никогда. Приведенные данные помогают управлять упругостью бетона. Упругость берется в расчет в зависимости от того, монтаж какого предмета конструкции будет произведен. К примеру, с какой силой будет нагружен элемент конструкции либо как долго на конструкцию будет воздействовать дополнительная масса и с какой периодичностью.
  3. Модуль упругости зависит также от возраста бетона. Чем больше возраст бетона, тем сильнее изменяется характер его пористости: наблюдается постепенное уменьшение объема микропор. Они словно зарастают продуктами цементной гидратации. К примеру, в возрасте 3 месяцев водонепроницаемость бетона увеличивается вдвое по сравнению с маркой 4-недельного возраста. Постепенно просматривается тенденция, согласно которой числовой показатель модуля упругости материала становится больше. Следовательно, чтобы определить величину в заданном промежутке времени, специалисты берут в расчет таблицы, в которых можно увидеть первоначальные данные. Эти данные умножаются на поправочные коэффициенты.
  4. Наблюдается прямая зависимость рассматриваемой характеристики от технологии обработки бетона. Существует три основных технологии.
Читать еще:  Холодный асфальт. Особенности производства и применения.

Затвердение бетона естественным путем. В начале процесса естественного затвердения материал схватывается. Начинается этот процесс спустя несколько часов с момента укладки. Образуются первичные сцепки внутри материала. Начавшаяся в бетоне химическая реакция между жидкостью и цементом в итоге заканчивается тем, что бетон начинает постепенно твердеть. Итоговой целью является сцепка застывшим вяжущим веществом всех элементов. Процесс схватывания может продолжаться как несколько часов, так и целые сутки. Это зависит от температуры. В это время настоятельно не рекомендуется подвергать материал каким-либо нагрузкам, так как впоследствии это негативно отразится на качестве всей конструкции. Временным стандартом естественного твердения бетона является один календарный месяц. По достижению этого срока на конструкцию разрешено осуществлять нагрузку.

Бетон автоклавного твердения. Такой вид бетона является искусственным материалом, создаваемым из нескольких компонентов и добавок. Данный метод твердения способствует материалу максимально соответствовать требованиям, при которых его будут использовать.

Тепловлажностный вид обработки. Данный вид отвердения имеет место в случаях, когда бетону необходимо придать высокую твердость.

  1. Количество времени, в течение которого материал подвергается нагрузке. Для того чтобы определить этот показатель, необходимо начальный модуль упругости умножить на необходимый коэффициент. Для разных типов материалов он различен: 0,85 и 0,7.

Схема приготовления бетонной смеси.

Для того чтобы продолжить рассматривать следующие факторы, оказывающие свое влияние на рассматриваемую характеристику бетона, следует обратить внимание на «ползучесть» материала. С ее помощью можно узнать, до какой степени может деформироваться бетон. Важно знать, что при коротком промежутке времени воздействия тяжести бетон приобретает форму, которой обладал изначально.

В том случае, если процесс действия груза на материал не останавливается, запускается процесс пластичной деформации. Данный вид деформации в большинстве случаев носит необратимый характер. Часто на практике бывают ситуации, при которых практически невозможно различить эти деформации друг от друга. В таком случае необходимо знать, что пластичность вызвана «ползучестью» материала. Именно «ползучесть» учитывается, когда воздействие нагрузки имеет продолжительный характер.

  1. Влажность воздуха. Ползучесть бетона и влажность воздуха имеют между собой прямую зависимость. Так же, как и в остальных случаях, эта зависимость определяется по специальным схемам. Необходимо учитывать также существующую температуру и радиационное излучение.
  2. Металлическая основа. Данный фактор необходимо принимать во внимание во время изучения рассматриваемой характеристики бетона, так как известно, что металл склонен к деформации от силы действия тяжести гораздо в меньше, чем бетон.

Итак, рассмотрев понятие модуля упругости бетона, можно увидеть, что данная характеристика зависит от множества факторов, не учитывать которые в строительной деятельности нельзя.

Модуль упругости: что это такое и его единицы измерения

Ещё в середине XVII века во многих странах учёные начали заниматься исследованием материалов. Они применяли различные методики и технологии для определения характеристик прочности. Учёный из Англии Роберт Гук сформулировал главные правила удлинения упругих тел под воздействием нагрузки, благодаря ему было введено понятие модуля Юнга.

Согласно закону Гука, абсолютное растяжение/сжатие прямо пропорционально приложенной нагрузке с коэффициентом пропорциональности. Эта величина и называется модулем упругости и измеряется в следующих единицах:

  • кгс/кв. см;
  • т/кв. м;
  • МПа.

Величина обозначается буквой Е и имеет различные величины, а также зависит от разных факторов. В лабораторных исследованиях были получены коэффициенты, которые сведены в общие таблицы. Характеристики показателя определяются согласно стандарту 52-101-2003.

Определение упругости и единицы измерения

Значение модуля любого вида бетона определяется согласно действующему СП 52-101-2003. Это нормативный документ, таблицы которого содержат все необходимые коэффициенты для определения упругости материала на м2.

Выполняя специальные расчеты с учетом того, какова деформация используемого материала, специалисты могут точно определить величину запаса прочности сооружения арочного типа, любого перекрытия здания, автомобильного или железнодорожного моста.

В литературе для профессионалов параметр упругости принято обозначать буквой Е. На его величину влияет действующая нагрузка и структура бетона. За единицу измерения взят паскаль, поскольку напряжение, вызванное в опытном образце действующей на него силой, измеряется в паскалях.

Читать еще:  Просел фундамент под домом из панелей домом как исправить

На модуль упругости В20 и других видов влияет технология производства, в частности способ твердения: естественный, автоклавный или тепловой обработки. Важную роль играют эксплуатационные характеристики материала.

Поэтому такой показатель, как упругость не одинаковый у одного класса. Например, если рассматривать ячеистые или тяжелые материалы, имеющие одно и то же значение прочности на м2, то величины их модулей будут разные.

Для того чтобы повысить модуль упругости бетона В15, специалисты рекомендуют использовать различные методы его изготовления. Так, при автоклавной обработке появляются более высокие упругие свойства, достигающие цифры 17. Применяя тепловую обработку с использованием атмосферного давления, можно увеличить значение до 20,5. Наибольшая величина модуля достигается при естественном твердении.

Подобным образом можно поднять модуль упругости В25 — самого популярного у строителей. При этом важно помнить, что при увеличении показателя класса материала растет и показатель его сопротивляемости упругим деформациям.

От чего зависит модуль упругости бетона?

Упругие свойства бетона зависят от факторов:

  • качества и объемного содержания заполнителей;
  • класса материала;
  • температуры воздуха и интенсивности радиоактивного излучения;
  • влажности среды;
  • времени воздействия нагрузки;
  • условий твердения смеси;
  • возраста бетона;
  • армирования.

Заполнители

Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.

Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.

Класс бетона

Чем выше класс материала, т.е. больше его прочность на сжатие и плотность, тем лучше он сопротивляется деформирующим нагрузкам. Наиболее высоким модулем упругости обладает бетон В60 — 39,5 МПа*10 -3 , минимальный показатель у композита класса В10- 19 МПа*10 -3 .

Температура и радиация

Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.

Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.

Влажность

Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.

Примечание: Относительную влажность воздуха принимают по СП 131.13330.2012 как среднемесячную влажность самого теплого месяца года в регионе строительства.

Время приложения нагрузки

Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.

Условия набора прочности

При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.

Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.

Возраст бетона

Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.

Армирование конструкций

Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.

Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.

Проницаемость бетона

Сопротивление истиранию непосредственно связано с прочностью бетона на сжатие. Бетон, обладающий высокой прочностью на сжатие, как правило, имеет высокую сопротивляемость истиранию. Испытание бетона на этот вид сопротивления производится путем истирания его стальными шарами в течение 48 час. и последующего определения потери веса.

В качестве заполнителя для бетона дорожных покрытий прочный щебень изверженных пород часто предпочитается более твердой и хрупкой кремневой гальке.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×