Termokings.ru

Домашний Мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Циркониевые сплавы: состав, свойства, применение

Циркониевые сплавы: состав, свойства, применение

Несмотря на то, что цинк как химический элемент был открыт только в XVI веке, латунь была известна ещё до нашей эры[1][2]. Моссинойки получали её, сплавляя медь с галмеем[3], то есть с цинковой рудой. В Англии латунь была впервые получена путём сплавления меди с металлическим цинком, этот метод 13 июля 1781 года запатентовал Джеймс Эмерсон (британский патент № 1297)[4][5]. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота.

Во времена Августа в Риме латунь называлась орихалк (лат. aurichalcum — буквально «златомедь»), из неё чеканились сестерции и дупондии. Орихалк получил название от цвета сплава, похожего на цвет золота. Однако в самой Римской империи до завоевания Британии в I веке н. э. латунь не производилась, поскольку у римлян не было доступа к источникам цинка (которые появились и стали разрабатываться только после образования провинции Британия в составе империи), до этого цинк мог только ввозиться эллинскими и римскими торговцами, собственной его добычи в континентальной Европе и Средиземноморье не было[6].

Общая мировая потребность в цинке для изготовления латуни составляет в настоящее время около 2,1 млн т. При этом в производстве используется 1 млн т первичного цинка, 600 тыс. т цинка, полученного из отходов собственного производства, и 0,5 млн т вторичного сырья[источник не указан 806 дней

]. Таким образом, более 50 % цинка, используемого в производстве латуни, получают из отходов. Технические латуни содержат обычно до 48-50 % цинка. В зависимости от содержания цинка различают альфа-латуни и альфа+бета-латуни. Однофазные альфа-латуни (до 35 % цинка) хорошо деформируются в горячем и холодном состояниях. В свою очередь двухфазные альфа+бета-латуни (до 47- 50 % цинка) малопластичны в холодном состоянии. Их обычно подвергают горячей обработке давлением при температурах, соответствующих области альфа- или альфа+бета-фаз. По сравнению с альфа-латунью двухфазные латуни обладают большей прочностью и износостойкостью при меньшей пластичности. Двойные латуни нередко легируют алюминием, железом, магнием, свинцом или другими элементами. Такие латуни называют специальными или многокомпонентными. Легирующие элементы (кроме свинца) увеличивают прочность (твёрдость), но уменьшают пластичность латуни. Содержание в латуни свинца (до 4 %) облегчает обработку резанием и улучшает антифрикционные свойства. Алюминий, цинк, кремний и никель увеличивают коррозионную стойкость латуни. Добавление в латунь железа, никеля и магния повышает её прочность.

Свойства твердых сплавов

Основным практически полезными свойствами сплавов данной категории являются высокая твердость, износостойкость и прочность. В некоторых случаях важную роль играет жаропрочность и жаростойкость, а также тугоплавкость.

Свойства сплавов изменяются в зависимости от группы, к которой относится тот или иной твердый сплав. Для сплавов ВК большую роль играет размер зерна карбида вольфрама. С уменьшением размера зерна возрастает твердость, но уменьшается прочность при изгибе и вязкость сплава (при одинаковом процентном соотношении карбида вольфрама и кобальта) и наоборот соответственно. Сплавы группы ТК, легированные карбидом титана, обладают лучшей стойкостью против окисления, более высокой твердостью и жаропрочностью по сравнению с группой ВК. Однако, имеют более низкую вязкость, прочность при изгибе, а также тепло- и электропроводность. Одновременное добавление карбидов тантала и титана (группа ТТК) увеличивает прочность сплавов при изгибе по сравнению с группой ТК.

Технологические свойства сплава, а именно, его высокая пластичность позволяют без проблем обрабатывать монель давлением как в горячем, так и в холодном состоянии. Также обладает хорошей свариваемостью. А вот механическую обработку необходимо осуществлять с низкой скоростью резания и подачей вследствие быстрого нагартовывания материала.

МаркаПлотность, г/см 3σИ, МПа, не менееHRA, не менее
ВК614,6-15,0150088,5
ВК814,4-14,8160087,5
ВК1014,2-14,6165087,0
Т30К49,5-9,895092,0
Т15К611,1-11,6115090,0
Т5К1213,1-13,5165087,0
ТТ7К1213,0-13,3165087,0
ТТ8К612,8-13,3125090,5
ТТ20К912,0-13,0130089,0
ТН205,5-6,0110090
КНТ165,6-6,2135089,0

Описание характеристик

Циркониевые сплавы наиболее активно используются в таких областях, как оболочки ТВЭлов, труб топливных каналов, различных деталей ТВС. Сам по себе цирконий характеризуется еще и тем, что сечение поглощения нейтронов довольно низкое. По этому показателю он уступает лишь таким веществам, как магний и бериллий. Кроме этого, температура плавления циркония очень высока.

Циркониевые сплавы, использующиеся в разных отраслях, характеризуются тем, что у них очень высокая коррозионная стойкость в воде, в пароводяной смеси, в насыщенном и перегретом паре до температуры примерно в 350-360 градусов по Цельсию. Также стоит отметить, что в ближайшем будущем ожидается, что этот температурный предел будет повышен до более высоких значений.

Окисление циркония паром

Одним из недостатков металлического циркония является то, что в случае аварии с потерей теплоносителя в ядерном реакторе циркониевая оболочка быстро реагирует с водяным паром при высокой температуре. Окисление циркония водой сопровождается выделением газообразного водорода . Это окисление ускоряется при высоких температурах, например, внутри активной зоны реактора, если тепловыделяющие сборки больше не полностью покрыты жидкой водой и недостаточно охлаждаются. Металлический цирконий затем окисляют с помощью протонов с водой с образованием водорода газа в соответствии со следующей окислительно — восстановительной реакции:

Циркониевая оболочка в присутствии оксида дейтерия D 2 O, часто используемого в качестве замедлителя и теплоносителя в реакторах с тяжелой водой под давлением следующего поколения, которые используются в ядерных реакторах CANDU, будет выражать такое же окисление при воздействии пара оксида дейтерия следующим образом:

Эта экзотермическая реакция, хотя и происходит только при высокой температуре, похожа на реакцию щелочных металлов (таких как натрий или калий ) с водой. Это также очень похоже на анаэробное окисление железа водой (реакция, использованная Антуаном Лавуазье при высокой температуре для получения водорода для своих экспериментов).

Эта реакция стала причиной небольшого взрыва водорода, который впервые наблюдался в здании реактора АЭС Три-Майл-Айленд в 1979 году, который не повредил здание защитной оболочки. Эта же реакция произошла в реакторах с кипящей водой 1, 2 и 3 АЭС Фукусима-дайити (Япония) после того, как охлаждение реактора было прервано землетрясением и цунами во время катастрофы 11 марта 2011 года, приведшей к ядерной катастрофе Фукусима-дайити. . Газообразный водород был выпущен в залы технического обслуживания реактора, и образовавшаяся взрывоопасная смесь водорода с кислородом воздуха взорвалась. Взрывы серьезно повредили внешние здания и по крайней мере одно здание защитной оболочки. Реакция произошла и во время Чернобыльской аварии , когда пар из реактора начал уходить. Во многих зданиях защитной оболочки реакторов с водяным охлаждением установлены рекомбинаторные блоки на основе катализаторов, предназначенные для быстрого преобразования водорода и кислорода в воду при комнатной температуре до достижения предела взрываемости.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • Перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью. Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия. Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести. Такие материалы подходят для применения при температуре до 500 °С. В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным. Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

Содержание никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля. Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Температура плавления тугоплавких металлов.
МеталлТемпература плавления, ºC
Вольфрам3410
ТанталОколо 3000
Ванадий1900
Ниобий2415
Цирконий1855
Рений3180
МолибденОколо 2600

Наиболее востребованным является молибденовый сплав. Для легирования применяются такие элементы, как титан, цирконий, ниобий. Для предотвращения коррозии выполняют силицирование изделия, в результате чего на поверхности образуется защитное покрытие. Защитный слой позволяет эксплуатировать жаропрочку при температуре 1700 градусов на протяжении 30 часов. Другие распространенные тугоплавкие сплавы: вольфрам и 30 % рения, 60 % ванадия и 40 % ниобия, сплав железа, ниобия, молибдена и циркония, тантал и 10 % вольфрама.

Применение металлического циркония

Благодаря своим уникальным свойствам и качествам, этот элемент может применяться во многих отраслях. Его используют в виде сплавов в разных сферах современной промышленности:

  • самолетостроение;
  • ядерная энергетика;
  • ракетостроение;
  • приборостроение;
  • литейное производство;
  • военная промышленность;
  • медицинское оборудование.

Из-за высокой устойчивости, которая даже превышает показатели титана, он стал пользоваться большой популярностью в медицинской отрасли. Его применяют для протезирования и производства хирургических инструментов.

Издавна металлический цирконий использовался для создания ювелирных украшений. Он способен приобретать многие оттенки, поскольку он анодированный металл. Это позволяет ювелирам воплощать самые разные художественные замыслы в создании украшений. Изделия смотрятся элегантно и красиво выглядят, поэтому ценятся на мировом рынке ювелирных украшений.

Благодаря высокой степени коррозийной защиты этот легирующий элемент помогает сделать многокомпонентные магниевые сплавы намного устойчивее к проявлениям коррозии. Он также улучшает вязкость сплавов, повышает их ударопрочность. В сплавах с медью, кроме, прочности сохраняет электропроводность. В сплавах с алюминием этот уникальный элемент значительно повышает их эксплуатационные качества.

Широко используется элемент в металлургической промышленности и проявляет себя как высокоэффективный раскислитель. Это качество в несколько раз превышает показатели марганац и титана. Цирконий улучшает вязкость марок сталей, тем самым помогает им быть более устойчивыми к ударным нагрузкам. Он способствует пластичности, выводя из сплавов серу и газ. В качестве легирующего элемента также применяется в цветной металлургии и для повышения теплоемкости алюминиевых сплавов.

Свойства и применение циркония

Циркониевые сплавы используются в химическом, машиностроительном и других производствах, в медицине. Порошок применяют для пиротехники, снарядов. Соединение с сульфатом используют для дубления кожи.

В ювелирном деле из циркониевого сплава или окиси делают оправы, вставки и самоцветы. Но это – не драгоценные камни или металл, а их имитация.

Физико-химические свойства

Чистый металл тверже стали, гибкий. Выдерживает давление в 65 кгс на 1 мм2. Чем больше газовых примесей, тем ниже прочность.

Формула записывается как ZrO2 (диоксид циркония). Он выдерживает до 750 °С, затем начинает рекристаллизовываться. Плавиться будет при + 1855 °С, а кипеть – при температуре более 4000 °С.

При естественной температуре циркониевый металл устойчив к коррозии:

  • водой;
  • хлором;
  • солью;
  • содой;
  • нашатырем.

У металла структура решетки похожа на шестиугольник с равными сторонами (гексагональная). Радиус атома равен 160 пикометра (10-12 м). В центре есть ядро с 51 нейтроном и 40 протонами. Вокруг него расположены пять орбит с 40 электронами.

У фианитов строение решетки напоминает равносторонний куб. Окрас зависит от примесей. Желтую и красную гамму дает соединение с церием. Благодаря титану получается золотистый самородок. В розовый окрашивает эрбий, а в пурпурный – неодим. Добавление хрома дает зеленый колер.

Лечебные свойства циркония

В медицине используют только циркониевые сплавы:

  • в стоматологии – штифты, коронки, импланты зуба;
  • в реконструктивной хирургии – стержни, фиксаторы, пластины, другие изделия для скрепления костей;
  • в хирургии – эндоскопические или обычные хирургические инструменты.

Циркониевые изделия биологически совместимы с тканями, не отторгаются, не окисляются, не вызывают нагноения или аллергии. Они ускоряют регенерацию поврежденных структур.

Циркониевые сережки рекомендуют носить после прокола ушей. Они быстрее заживут, не будут гноиться.

Подмечено, что браслет или пояс с металлическими вставками ускоряет выздоровление у пациентов с патологиями опорно-двигательного аппарата. Около 10 % людей отзываются об улучшении кожи при псориазе или других дерматологических болезнях.

Область применения

Ввиду своих свойств есть многие отрасли промышленности, где применяется цирконий. Некоторые из них:

  • В электротехнике сплав циркония и ниобия используется как сверхпроводник, он выдерживает высокие нагрузки. Кроме того, металлом покрываются электронные платы в радиоаппаратуре для поглощения выделяемых газов. Фильтры на рентгеновских трубках имеют высокие показатели монохромности.
  • Цирконий востребован в ядерной энергетике в качестве оболочек узлов термоядерных реакторов.
  • Металлургическая промышленность использует циркон в качестве легирующего вещества. Металл считается сильным окислителем, по своим характеристикам превосходит марганец и кремний. Увеличивает прочность материалов, при этом улучшается процесс резки. В изготовлении корундовой керамики используется в качестве основного компонента.
  • В машиностроении служит материалом для производства насосов, запорной арматуры, функционирующей под действием различных агрессивных сред.
  • Производство фейерверков и салютов. Это объясняется тем, что при горении отсутствует выделение дыма.
  • Применяется цирконий и химической промышленности, являясь материалом для кермета — специального металлокерамического покрытия, имеющего высокие показатели устойчивости к износу и действию кислот.
  • В оптике широко применяется фианит — обработанный цирконий с примесями скандия и прочих редкоземельных металлов. У фианитов большой угол преломления, что способствует их использованию в производстве линз. В ювелирном деле он является синтетическим аналогом бриллианта.
  • Цирконием наполняют трассирующие пули и осветительные ракеты в военном производстве.

Марки титана и сплавов

Наиболее распространены титан и сплавы марок ВТ1-0, ВТ1-00св, ВТ1-00. Они относятся к категории технических. В состав данных марок не входят легирующие элементы. Поставляется титан в виде плит, листов, труб и прутков. Проволока чаще всего производится из материала марки ВТ1-00св.

Сегодня известно множество марок титанов и титановых сплавов, отличающихся по технологическим, механическим свойствам, химическому составу. Чаще всего в их составе содержаться такие элементы, как:

  • алюминий,
  • молибден,
  • ванадий,
  • марганец,
  • хром,
  • олово,
  • кремний,
  • цирконий,
  • железо.

Титан марки BT5 и сплавы из него содержат до 5% алюминия, что наделяет их высокой прочностью. Материалы хорошо штампуются, куются, прокатываются и свариваются. Из них производятся прутки (круги), трубы, проволока, листы. Титановые сплавы ВТ5-1 кроме алюминия содержат олово в размере 2-3% ,что улучшает их технологические характеристики. Из таких материалов получают все виды полуфабрикатов — плиты, листы, поковки, профили, трубы, штамповку, проволоку.

К хорошо деформируемым сплавам титана относят ОТ4 и ОТ4-1, содержащие алюминий и марганец. Данные материалы отличаются высокой технологичной пластичностью и свариваются любыми видами сварок. Титаны этих марок используются в производстве плит, лент, листов, полов, профилей, труб.

Прочный сплав ВТ20 содержит алюминий, цирконий, молибден и ванадий. Материал отличается высокой жаропрочностью. Сплав титана ВТ3-1 содержит такие элементы, как Ti, Al, Cr, Mo, Fe, Si и, как правило, подвергается изотермическому отжигу, что наделяет его высокой пластичностью и термической стабильностью. Этот сплав является наиболее освоенным в производстве. Из него изготавливаются поковки, штамповки, пруты, профили.

Сплавы титана ГОСТ 19807-91 содержат углерод и называются тугоплавкими карбидами. Их теплопроводность в 13 раз ниже показателя алюминия и в 4 раза – железа.

Применение бронзы

Бронза используется в современном машиностроении, ракетной технике, авиации, судостроении и других отраслях промышленности. Благодаря устойчивости к механическому истиранию и высокой коррозионной стойкости бронзовая продукция применяется для изготовления деталей машин и приборов, участвующих в подвижных узлах в процессе трения. Детали из бронзы требуют периодической замены, то есть являются расходными. Из безоловянных бронзовых сплавов изготавливают прокат для составляющих химических приборов, регулирующей арматуры отопительных систем и трубопроводов другого назначения.

Бронзу используют для литья скульптур и памятников, так как материал долговечен, не подвергается атмосферным влияниям и устойчив против механических повреждений. Изделия высокохудожественных форм в театрах, дворцах, залах (люстры, торшеры, канделябры) также изготавливаются из бронзы.

Читать еще:  Резка алюминия — плит, листов, кругов, прутков, бокса.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×