Теплопроводность сплавов меди. Температура плавления латуни и бронзы
Латунь
- Алюминий
- Д16
- Д16т
- В95
- АД31
- АМг1
- АМг2
- АМг3
- АМг4
- АМг5
- АМг6
- Бронза
- БрБ2
- БрАЖ9-4
- БрАЖН10-4-4
- БрОФ
- БрОЦС5-5-5
- БрАЖМц10-3-1,5
- Латунь
- Л63
- Л68
- ЛС59-1
- Медь
- М1
- М2
- М3
Латунь представляет собой сплав меди с цинком. Процентное соотношение металлов может варьироваться, в среднем медь составляет около 70%, а цинк — порядка 30%. Латунные сплавы обладают уникальными эксплуатационными характеристиками и используются в производстве различных катанных деталей — полос, листов, плит, проволоки, прутков и других, для которых важна текучесть, пластичность, деформируемость и способность к обработке.
Основные свойства меди
1. Физические свойства.
На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.
Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.
Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.
Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.
2. Химические свойства.
Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.
Сплавы на основе меди
Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.
Важные свойства металла:
- Температура плавления — 1083°С.
- Структура кристаллической решетки — кубическая гранецентрированая.
- Плотность — 8,94 г/см3.
Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.
При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.
Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.
Бронзы
Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.
Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.
Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.
Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:
- Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
- Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
- Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
- Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.
Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.
При маркировке бронз используются начальные буквы Бр, после которых идут первые буквы названий основных металлов с указанием их содержания в процентах. Например, сплав БрОФ8-0,3 включает 8% олова и 0,3% фосфора.
Латуни
Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.
- Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.
- Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.
- Свинец упрощает обработку резанием.
Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.
При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.
Дуговые процессы, применяемые при сварке меди
Процессы дуговой сварки имеют первостепенное значение при производстве изделий из меди. Основные применяемые процессы это ручная дуговая сварка покрытым электродом (MMA), аргонодуговая сварка (TIG) неплавящимся вольфрамовым электродом и полуавтоматическая (MIG MAG) сварка плавящимся электродом. Также, но несколько реже используют такие процессы, как плазменная сварка (PAW) и сварка под флюсом (SAW). Оборудование для этих процессов ничем не отличается от стандартного оборудования для сварки других сталей.
Ручная дуговая сварка может быть использована для сварки широкого диапазона толщин медных сплавов. Покрытые электроды для сварки медных сплавов имеют стандартные размеры от 2 до 5 мм диаметром.
Сварочные процессы, которые используют защитный газ, как правило, предпочтительнее, хотя многие некритические соединения могут быть сварены при помощи электродов и ручной дуговой сварки. Аргон, гелий или их смесь используются в качестве защитных газов для аргонодуговой, плазменной и полуавтоматической сварки.
2 Теплопроводность и другие свойства бронз
Итак, не только цвет меняется из-за добавок. В случае с оловянными бронзами технические характеристики напрямую зависят от весового содержания главного и дополнительных легирующих элементов. Так, например, при 5% Sn пластичность сплава начинает падать, а если количество олова достигнет 20%, то резко ухудшаются и механические свойства материала, и он становится более хрупким, снижается твердость. Вообще, бронзы, в состав которых входит более 6 весовых процентов Sn, используются в литейном производстве, для ковочных же и прокатных работ они непригодны.
Если же добавить в сплав до 10% по весу цинка, то он практически не произведет никакого влияния на механические свойства оловянной бронзы, только лишь несколько удешевит ее. Чтобы улучшить обрабатываемость материала в него вводят до 5% свинца, благодаря включениям которого облегчается стружколомание. Ну а фосфор выступает в качестве раскислителя, и если в сплаве содержится более одного процента этого элемента, то такие бронзы часто называют фосфористыми.
Сравнивая оловосодержащие бронзы со сплавами, в состав которых не входит Sn, то первые значительно выигрывают по величине усадки, она у них минимальная, зато вторые имеют иные преимущества. Так, механические свойства алюминиевой бронзы значительно превосходят характеристики оловянной, кроме того, она имеет еще и большую химическую стойкость. Кремнецинковая же более жидкотекучая, а бериллиевая наделена высокими показателями упругости, на таком же уровне находится и ее твердость.
Для сфер, где применяются бронзы, особенно важна теплопроводность. Мы привыкли, что этот показатель для металлов довольно высокий. Но особенность всех сплавов в том, что, как правило, теплопроводность при введении добавок падает. Не стала исключением и обсуждаемая нами разновидность сплавов. Всем хорошо известно, насколько высока теплопроводность чистой меди, часто это даже становится причиной ограничений в ее использовании. А вот для бронз все совсем по-другому, это качество проявляет себя значительно меньше. Даже по сравнению с похожим сплавом латунью теплопроводность бронзы в большинстве случаев заметно ниже. Исключением являются лишь низколегированные сплавы меди, естественно, они приближаются по этому показателю к чистому металлу.
Низкая теплопроводность становится причиной затрудненного отвода тепла, поэтому бронзы не используются в узлах трения, в качестве электродов для сварки или других механизмах, где устранять перегрев нужно максимально быстро.
Области применения
Свойства материалов определяют и область применения. Состав каждого сплава указывается подробно с тем, чтобы не допустить ошибок при использовании.
- Латунь издревле применялась в ювелирном деле: желтая латунь по внешнему виду ничем не отличается от золота 583 пробы. И, кстати, именно она использовалась в качестве тренировочного материала для золотых дел мастеров, так как и физические ее характеристики во многом близки к золоту. Сегодня сплав используют для изготовления украшений, которые хоть и относятся к бижутерии, однако весьма популярны благодаря красоте и изяществу.
- Материал применяется в производстве мебели. Он легко поддается ковке, что позволяет значительно украсить мебель. Благодаря этому же свойству из него производят множество предметов декора – статуэтки, посуду, подставки, бра.
- Кроме того, томпак, то есть, состав с высоким содержанием меди, применяется для получения деталей теплотехнической и химической аппаратуры: змеевиков, капиллярных трубок, сильфонов и прочего.
- Из литьевой латуни получают множество фасонных деталей, включая разнообразные фитинги.
- Автоматная – материал для изготовления часовых деталей, машинных, а также различного вида крепежа.
- Морская применяется в судостроении для производства корпусов приборов, профилей, труб.
- Деформируемые сплавы используют при изготовлении дверной фурнитуры, водопроводных труб, смесителей, кранов и прочего.
Латуни разного состава применяются во многих отраслях. В основном их использование связано с хорошей коррозийной стойкостью материала, малым весом и, конечно, редкой эстетической привлекательностью сплава.
О том, как начистить медь и латунь до блеска, поведает данный видеоролик:
Нержавеющая сталь.
Отличается устойчивостью к коррозиям в агрессивных средах. Это ее главное свойство. Сплав подвергают легированию, основной легирующий элемент при этом — хром, и чем его больше, тем устойчивей сталь к коррозийному воздействию, например, кислот. Содержание хрома может быть от 12 до 20 % (если хрома 17 и более процентов, сплав выдержит воздействие в том числе и азотной кислоты 50% концентрации). Чтобы усилить это замечательное свойство нержавеющей стали, придать ей дополнительные физико-химические свойства, ее легируют еще никелем, титаном, ниобием, молибденом. Соотношение тех или иных элементов и их количество определяет марку стали и ее устойчивость к сильным кислотам (фосфорной, серной и т.д.)
Чем объяснить такую коррозийную стойкость? На границе хромосодержащего сплава и среды образуется пленка окислов и прочих нерастворимых соединений, которая и защищает поверхность. Из нержавейки изготавливают множество различной продукции. И не только в промышленности. Это не только прочный, но и с эстетической точки зрения приятный материал — в архитектуре, в дизайне бытовых предметов он используется очень часто.
Лазерная резка нержавейки
Лазерная резка алюминия
Лазерная резка меди
Лазерная резка латуни
Это самый распространенный цветной металл. Устойчив к коррозиям в воздушной среде (только углекислый газ, содержащийся в воздухе, образует зеленоваты налет — патину), в пресной и соленой воде, с щелочными растворами, но растворяется в сильных кислотах (азотной, серной). Легко обрабатывается пайкой и давлением, однако литейные свойства ее не очень высоки. Раскисленная и бескислородная медь применяется в электронике.
Медные сплавы отличаются износостойкостью, как и чистая медь антикоррозийны.
По взаимодействию меди с примесями выделяют 3 группы:
- Твердые растворы: с алюминием, цинком, сурьмой, никелем, олово, железом (снижается электропроводность и теплопроводность);
- Не растворяющиеся примеси: висмут, свинец (электропроводность не изменяется, но затрудняется обработка давлением);
- Хрупкие химические соединения: сера и кислород (кислород снижает прочность, а сера способствует лучшей резке).
Медь и медные сплавы издавна и по сей день используются в изготовлении посуды, предметов быта, используются в искусстве и архитектуре.
Удельный вес
В связи с тем, что медь не является однокомпонентным металлом, расчет его удельного веса своими силами в бытовых условиях затруднен. Как правило, подсчеты осуществляются в соответствующих лабораториях. Но средний диапазон уже давно вычислен и составляет от 8,63 до 8,8 г/см3.
Для упрощения проведения самостоятельных расчетов далее приводим таблицу с данными об удельном весе в соответствии с единицами измерения.
Материал | Удельный вес (г/см3) | Вес 1 м3 (кг) |
Медь | От 8,63 до 8,8 | От 8630 до 8800 |
Точные данные используются при подсчете веса необходимого при производстве металлопроката и металлоизделий.
Обесцинкование латуни
Латуни, кроме общей коррозии, подвержены также особым видам коррозии: обесцинкованию и «сезонному» растрескиванию. Обесцинкование — это особая форма коррозии, при которой сначала происходит растворение поверхности латунного изделия в реагенте. Раствор, в котором происходит обесцинкование латуни, содержит больше цинка, чем меди. В результате обменных реакций в катодных участках электрохимически осаждается медь в виде губчатой пленки. Быстрее обесцинкованию подвергаются латуни с повышенном содержанием цинка (Л60, Л63), так как в двухфазных латунях наблюдается преимущественное растворение β-фазы, являющейся анодом, а α-фаза — катодом. Процесс обесцинкования наблюдается при контакте латуни с электропроводящими средами (кислые и щелочные растворы). В результате латуни становится пористыми, на поверхности появляются красноватые пятна, ухудшаются механические свойства