Termokings.ru

Домашний Мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какая температура плавления алюминия по Цельсию

Какая температура плавления алюминия по Цельсию

Такой металл, как алюминий, очень распространен в мире. Немалое его количество содержится в организме человека, а уж в окружающем мире его еще больше. Среди материалов, из которых построены дома, а также в конструкции любого автомобиля есть некая доля алюминия.

Нередко из этого вещества изготавливаются детали мебели. И если вдруг что-то из этого сломается, то можно либо приобрести новый товар в соответствующем магазине, либо заняться самостоятельным ремонтом изделия. В последнем случае придется плавить металл в домашних условиях, а для этого уже нужно знать о некоторых свойствах этого металла.

  • О температуре плавления
    • Уменьшение температуры
  • Процесс плавления в домашних условиях
    • Средства защиты
    • Выбор формы для литья
  • Кратко о процессе

Для изготовления какой-либо алюминиевой конструкции вовсе не обязательно подробно изучать все характеристики вещества, но на основные моменты следует обратить свое внимание, включая знание, при какой температуре плавится алюминий.

Температура плавления металлов

Металлы и неметаллы

Любой кусок металла, например, алюминия, содержит миллионы отдельных кристаллов, которые называются зернами. Каждое зерно имеет свою уникальную ориентацию атомной решетки, но все вместе зерна ориентированы внутри этого куска случайным образом. Такая структура называется поликристаллической.

Аморфные материалы, например, стекло, отличаются от кристаллических материалов, например, алюминия, по двум важным отличиям, которые связаны друг с другом:

  • отсутствие дальнего порядка молекулярной структуры
  • различия в характере плавления и термического расширения.

Различие молекулярной структуры можно видеть на рисунке 1. Слева показана плотно упакованная и упорядоченная кристаллическая структура. Аморфный материал показан справа: менее плотная структура со случайным расположением атомов.

Рисунок 1 – Структура кристаллических (а) и аморфных (б) материалов.
Кристаллическая структура: упорядоченная, повторяющаяся и плотная,
аморфная структура – более свободно упакованная
с беспорядочным расположением атомов.

Плавление металлов

Это различие в структуре проявляется при плавлении металлов, в том числе, плавлении алюминия различной чистоты и его сплавов. Менее плотно упакованные атомы дают увеличение объема (снижение плотности) по сравнению с тем же металлом в твердом кристаллическом состоянии.

Металлы при плавлении испытывают увеличение объема. У чистых металлов это объемное изменение происходит весьма резко и при постоянной температуре – температуре плавления, как это показано на рисунке 2. Это изменение представляет собой разрыв между наклонными линиями по обе стороны от точки плавления. Обе эти наклонные линии характеризуют температурное расширение металла, которое обычно является различным в жидком и твердом состоянии.

Рисунок 2 – Характерное изменение объема чистого металла
по сравнению с изменением объема аморфного материала [4]:
Tg – температура стеклования (перехода жидкого состояния в твердое);
Tm – температура плавления

Теплота плавления

С этим резким увеличением объема при переходе металла из твердого состояния в жидкое связано определенное количество тепла, которое называется скрытой теплотой плавления. Это тепло заставляет атомы терять плотную и упорядоченное кристаллическую структуру. Этот процесс является обратимым, он работает в обоих направлениях – и при нагреве, и при охлаждении.

Равновесная температура плавления

Как было показано выше, чистые кристаллические вещества, например, чистые металлы, имеют характерную температуру плавления, которую часто называют «точкой плавления». При этой температуре это чистое твердое кристаллическое вещество плавится и становится жидкостью. Переход между твердым и жидким состоянием для малых образцов чистых металлов настолько мал, что может измеряться с точностью 0,1 ºС.

Жидкости имеют характерную температуру, при которой они превращаются в твердое вещество. Эту температуру называют температурой затвердевания или точкой затвердевания. Теоретически – в равновесных условиях – равновесная температура плавления твердого вещества является той же самой, что и равновесная температура его затвердевания. На практике можно наблюдать небольшие различия между этими величинами (рисунок 3).

Рисунок 3 – Кривые охлаждения и нагрева чистого металла.
Видны явления переохлаждения при охлаждении и перегрева при нагреве.
В начале затвердевания наблюдается впадина на кривой охлаждения,
что объясняется замедленным началом кристаллизации [4]

Температуры ликвидус и солидус

  • Температура начала плавления называется температурой солидус (или точкой солидус)
  • Температура окончания плавления – температурой ликвидус (или точкой ликвидус).

«Солидус» означает, понятно, твердый, а «ликвидус» – жидкий: при температуре солидуса весь сплав еще твердый , а при температуре ликвидуса – весь уже жидкий .

При затвердевании этого сплава из жидкого состояния температура начала кристаллизации (затвердевания) будет та же температурой ликвидус, а окончания кристаллизации – та же температура солидус. При температуре сплава между его температурами солидуса и ликвидуса он находится в полужидком-полутвердом, кашеобразном состоянии.

Теплопроводность

Теплопроводность алюминия — одно из его физических свойств. Оно, как и многие, зависит от чистоты структуры материала. То есть, чем ближе к единице чистота алюминия, тем выше и его свойства теплопроводности. Технический алюминий, процентность которого равна приблизительно 99,49, имеет теплопроводность (при 200 градусах Цельсия) 209 Вт/(м*К). Если же технический алюминий обладает процентностью 99,70, то значение его теплопроводности достигает 222 Вт/(м*К).

В то время, когда материал электролитически рафирован и его чистота 99,9% — значение теплопроводности уже при 190 градусах Цельсия повышается до 343 Вт/(м*К). В отличие от прочности, которая повышается при сплаве алюминия с другими металлами, свойства теплопроводности в этом случае уменьшаются. Примером можно привести добавку Mn. Всего два процента такой добавки способны уменьшить теплопроводность алюминия со значения 209 Вт/(м*К) до показателя, равного 126 Вт/(м*К). Стоит также отметить, что свойства теплопроводности алюминия настолько высоки, что преимущество относительно них есть лишь у меди и серебра.

Температура плавления алюминия — достаточно весомый показатель, который учитывается любой отраслью промышленности, работающей с данным материалом. Температура плавления – показатель нестабильный, во многом он зависит от того, какие материалы применены для примеси с алюминием. От температуры плавления зависит скорость обработки материала, то есть, можно сказать, производственные возможности. Наиболее часто алюминий обрабатывается в России, Австралии, Канаде и США. В этих странах крупная доля отрасли промышленности занимается плавкой алюминия.

У каждой страны имеются свои технологии плавки, со временем, благодаря экспериментам с добавлением различных материалов, позволившие минимально возможно снизить показатель температуры плавления алюминия. Наиболее точный, стандартный показатель температуры плавления алюминия составляет 660,32 градуса Цельсия. В связи с таким большим показателем, плавление материала можно организовать только в специальных условиях и специально оборудованных помещениях. Чтобы осуществить этот процесс в домашних условиях, первое, что необходимо – оборудование. Обычно для этого используется тигельная муфельная печь.

4 Изготовление литейной формы под отливку

Литейную форму изготавливают в формовочном ящике, который называют опокой, а делают из неструганных досок (чтобы обеспечить лучший контакт стенок с формовочной землей). У опоки размеры должны быть приблизительно в 1,5 раза больше габаритов детали. Она состоит из 2-х частей:

  • верхней – рамка в виде ящика без дна и верха с поперечинами (двумя или тремя) посередине;
  • нижней – представляет собой ящик с дном.

Чтобы обе части прочно соединялись между собой, на нижнем ящике делают фиксаторы, а в рамке – углубления под них. Затем готовят формовочную землю: тщательно перемешивают мелкий чистый песок – 75 % от общего объема, глину – 20 % и каменноугольную пыль – 5 %. Должна получиться однородная масса.

Читать еще:  Что означает «твёрдость стали» или что такое HRC?

Для изготовления формы потребуется модель будущей отливки. Ею может служить сама деталь или специальная модель, которую выполняют из дерева или какого-нибудь иного материала. Когда для формовки используют уже сработанное (поврежденное) в отдельных местах изделие, то недостающие фрагменты на нем наращивают шпатлевкой (лучше эпоксидной) до контуров такой же новой детали. Полностью затвердевшие реставрированные места необходимо обработать напильником и зачистить шкуркой.

Формовку выполняют следующим образом:

  1. Формовочную землю насыпают в нижний ящик опоки до его верха, а затем слегка утрамбовывают.
  2. Готовую модель припудривают тальком или порошкообразным графитом и вжимают наполовину в землю. Модель размещают так, чтобы ее выступы и иные части легко извлекались из формы, которая при этом не разрушалась бы.
  3. Землю внутри ящика и модель, лежащую в ней, посыпают тальком или графитом.
  4. На ящик устанавливают верхнюю часть опоки, совмещая отверстия с фиксаторами. В неответственной части отливаемой детали устанавливают коническую пробку (узкой частью к модели, а широкой кверху) для последующего формирования литника (расплавленный сплав будет заливаться в форму через него).
  5. Формовочную землю с избытком насыпают в опоку и хорошо утрамбовывают.
  6. Очень аккуратно извлекают пробку литника.
  7. С помощью острого предмета разъединяют части формы, снимают верхнюю и вынимают из нижней модель.

У полученной формы на обеих частях должны иметься углубления, в точности отображающие геометрию детали.

В некоторых случаях приходится дополнительно подправлять форму с помощью тонкого гибкого ножа:

  • формовочную землю добавляют в тех местах, где она вынулась вместе с моделью, прилипнув к последней;
  • излишки земли удаляют.

У форм для длинных деталей в одном конце формируют литник, а на другом – аналогичное отверстие, но служащее для выхода из них воздуха по мере их заполнения расплавленным сплавом.

Обе половины формы должны подсохнуть. После этого их соединяют, а затем хорошо сжимают (между ними не должно остаться щели). Форма для заливки бронзы готова.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • Перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью. Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия. Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести. Такие материалы подходят для применения при температуре до 500 °С. В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным. Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

Содержание никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля. Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Температура плавления тугоплавких металлов.
МеталлТемпература плавления, ºC
Вольфрам3410
ТанталОколо 3000
Ванадий1900
Ниобий2415
Цирконий1855
Рений3180
МолибденОколо 2600

Наиболее востребованным является молибденовый сплав. Для легирования применяются такие элементы, как титан, цирконий, ниобий. Для предотвращения коррозии выполняют силицирование изделия, в результате чего на поверхности образуется защитное покрытие. Защитный слой позволяет эксплуатировать жаропрочку при температуре 1700 градусов на протяжении 30 часов. Другие распространенные тугоплавкие сплавы: вольфрам и 30 % рения, 60 % ванадия и 40 % ниобия, сплав железа, ниобия, молибдена и циркония, тантал и 10 % вольфрама.

20 комментариев к записи « Техники безопасности пост »

Страшно. Подруга уронила на ногу кальян -остался шрам, а тут — просто ад какой-то.

Я даже боюсь представить что будет с часть тела, которой коснётся раскалённый металл.

ДА,такое лучше не представлять

А как выглядит этот процесс на фоне истории борьбы за производство алюминия в СССР в 20-е-30-е годы. Это же ого-го, а его, оказывается, можно так. Босиком.

Честно говоря, я не знаю что да как было с алюминием в СССР в 20-е и 30-е. Хотя подозреваю, что и у нас часть умельцев примерно также орудует, набравшись техник из прошлого 🙂

я бы купил там тазик. или кастрюлю

Так и представляю себе картину «сгонял на Мадагаскар — купил кастрюлю» ))) Жалко Варламов расценки не написал ))

я люблю такие вещи привозить из экспедиций. из Якутии привёз шкуру жеребёнка, из Киргизии медный чайник товарища Сухова, и памирский палас из шерсти яка из Таджикистана!

Должно быть сильную волю надо иметь, что бы объёмные вещи из далёких поездок привозить 🙂 Моя душа вот пока к таким действиям не очень лежит 🙂

Ну скажем так. Нога без ожогов, значит раньше не проливал. Хотя не факт, что он там не первый день работает 🙂 Тут как пройти по бревну. Пока на земле лежит — без проблем. А вот если через пропасть… И кстати. А почему античные кузнецы делали по другому? Тем-более что у них были девайсы системы «раб» для таких работ 🙂

Насчёт античности — это я больше имел весь процесс ввиду — как-то ну прям на голой земле всё это колбасить… Да ну 660 градусов — это если пролить, то без шансов (( 100 градусов-то уже предел для контакта с металлом, а тут в 6 раз больше.

В кельвинах между-прочим всего в три раза горячее 🙂 По Дискавери показывали старые сталепрокатные заводы (XVIII-XIX век вроде), там процесс не сильно отичался. Тоже на полу. Ну разве что в суровых варежках. Ну так и сталь погорячее будет.

В кельвинах между-прочим всего в три раза горячее 🙂 (с) Ну это конечно сильный аргумент )))) Ну сталелитейные заводы 19-то века уж точно такого не позволяли себе таких условий. Какие-то пораньше, в средние века, наверняка могли, опять же если рабы там и всё такое… Но всё же до технической революции люди, которые работали с металлом — это в первую очередь были выдающиеся мастера (в основном, конечно) — посмотрите как много в той же России сохранившихся металлических предметов 500-летней давности, скажем. Позволить металлу так обильно контактировать с грязью — это в сущности означало бы их провал — значит они так грубо не работали

Колоритно смотрится. Суровые мадагаскарские мужики настолько суровы… челябинские не дотягивают явно =) От ноги останется, хорошо если кость, в случае чего =

Блин, мне ж спать скоро… лучше я не буду особо думать об этом ))

Мне лет семь было, ходил с матерью на работу, наблюдал такой процесс… Правда спецодежды какой то не помню, но конечно не босиком…

Да многие, думаю, видели. В сущности, если просто смотреть — это в принципе не страшно же, но вот доверять свои ноги (равно как и будущее автоматически) случайности… Некоторые человеческие глупости находятся за рамками нормальной логики

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Поиск по блогу

Свежие записи

  • Головология | §46. Стремление 18.10.2020
  • Зачем знать законы людям с активной гражданской позицией 31.05.2020
  • Технический персонал должен быть внимательным 30.05.2020
  • Принцип «Ноль отходов» и осознанный минимализм в Кудрово | Анна Четверткова 30.05.2020
  • Раздельный сбор отходов в Кудрово | Анастасия Хорошева 30.05.2020

Популярное за неделю

  • Как вставить изображение в…
  • Город Ниен
  • Дореволюционные фото русских…
  • Карты Европы за два тысячелетия
  • Старинные карты Ярославля
  • Альбом архитектурных проектов…
  • Магдебургские ворота Софийского
  • Тюрьма Трубецкого бастиона…
  • Интервью с практикующим…
  • Павловская крепость | Таганрог

Мой канал

© 2010-2020 Блог Дмитрия Кудинова

Все материалы блога охраняются законом об авторском праве. Любое коммерческое использование материалов блога запрещено без письменного разрешения автора.

Задействуем полуавтомат

Применение для сварки алюминиевых сплавов полуавтоматического аппарата является идеальным решением. Устройство генерирует импульсы тока высокого напряжения, благодаря чему отлично разрушается пленка оксида металла. Но полуавтоматы с режимом сварки алюминия стоят очень дорого. Поэтому в бытовых условиях умельцы приспособились обходиться обычными полуавтоматами без такого функционала. Метод идентичен технологии сваривания черных металлов, но вместо обычной присадочной проволоки используется алюминиевая.

Еще несколько особенностей:

  • В силу того, что алюминиевая проволока расплавляется с большей скоростью по сравнению со стальной, соответственно, подавать ее надо в несколько раз быстрей.
  • Коэффициент расширения алюминия больше, чем стали. Чтобы выровнять ситуацию, необходимо приобрести специальный наконечник с обозначением «Al».
  • Мягкая проволока может стать причиной образования скрутки или петли, что приведет к прерывания сварочных работ. Желательно предусмотреть специальный механизм подачи. Его несложно смастерить самостоятельно из трех-четырех направляющих роликов.

Способы переработки алюминия

Отходы алюминия перерабатываются несколькими способами, а именно:

  • Сортировка. Жесть отделяется от постороннего мусора, промывается, нарезается и освобождается при помощи магнита от других примесей железа. Полученное вторсырье прессуют и упаковывают в брикеты для дальнейшей переработки.
  • Сортировочно-измельчающая линия. Процесс управляется при помощи специальных станков. На выходе получается алюминиевый порошок с низким содержанием посторонних примесей.
  • Пиролиз — способ нагрева отсортированного и нарезанного вторсырья до температуры выше плавления алюминия. Все органические примеси и краски сгорают, а на выходе получается пригодный для вторичного использования чистый сплав.

Учитывая, что температура плавления этого металла сравнительно невелика и составляет 660 градусов Цельсия, то получить сплав можно и в домашних условиях. Для этого из гипса или глины изготавливается плавильная печь. В качестве источника энергии применяются угольные брикеты. Время, необходимое для расплавки стандартной жестяной банки, — 3-5 секунд. Для получения 1 кг сплава нужно приблизительно 100 банок. Сооружение домашней плавильни требует строгого соблюдения техники безопасности, но и такой бюджетный способ переработки алюминия может принести доход.

Семерка редких

Discovery Channel рассказывает о необычных свойствах драгоценных металлов

История человечества неразрывно связана с сокровищами: их искали, за них сражались, они меняли географию и судьбы людей — и сейчас не потеряли своей ценности. Стоимость одного грамма многих драгоценных металлов превышает десятки долларов. Чтобы найти их, люди едут даже туда, где еще никто не бывал, — как участники нового проекта Discovery Channel «Золотая лихорадка: бурные воды», которые отправятся на берега ледяных рек Аляски. Из нашего материала вы узнаете о том, как были обнаружены шесть редких драгоценных металлов, каковы их свойства и для чего они используются.

Калифорний

Описание: Металл серебристо-белого цвета с ярким блеском, искусственного происхождения.

Характеристика: Калифорний в окружающей среде не существует, он добывается только лабораторно в очень небольших количествах. Известны 20 изотопов, наиболее ценным из них является калифорний-252 с периодом полураспада в 2,6 года. Температура плавления металла 900 градусов Цельсия, температура кипения оценивается в 1300-1500 градусов Цельсия. Калифорний радиоактивен, является мощным источником нейтронов и токсичен. Ежегодно производят не больше нескольких сот миллиграммов 252-го изотопа.

Применение: Научные исследования (нейтронно-активационный анализ, изучение спонтанного деления ядер), медицина (нейтронная радиохирургия в онкологии), изучение земных недр и космического пространства (поиск полезных ископаемых, исследование поверхности Луны).

Интересные факты:

  • Калифорний назван в честь Калифорнийского университета в Беркли, где в 1950 году его получила группа ученых под руководством обладателя Нобелевской премии по химии и участника Манхэттенского проекта Гленна Сиборга.
  • Создатель калифорния и один из основоположников ядерной химии Гленн Сиборг причастен к открытию десяти новых элементов таблицы Менделеева, один из которых в его честь получил название сиборгий.
  • С калифорнием работают только Научно-исследовательский институт атомных реакторов (НИИАР) в Димитровграде и Национальная лаборатория Оук-Ридж в США.
  • Калифорний относится к числу самых дорогих веществ в мире. По некоторым оценкам, один грамм этого вещества стоит 26 миллионов долларов.

Осмий

Описание: Металл серебристо-белого цвета с голубоватым отливом и ярким блеском, природного происхождения.

Характеристика: Осмий — довольно хрупкий, но твердый и тугоплавкий металл. Это самое плотное из простых веществ с крайне высокой температурой плавления (3033 градуса Цельсия) и кипения (5012 градусов Цельсия). В чистом виде не встречается: в природе его можно обнаружить в полиметаллических рудах вместе с платиной, палладием, медью, никелем и молибденом, а также в твердых растворах — невьянските и сысертските. Больше всего осмия в России, США, Колумбии и Канаде, но его добыча — очень трудоемкий процесс, который занимает около года, поэтому металл так дорог.

Применение: Авиационная и ракетная промышленность (упрочнение платиновых сплавов в электрических контактах, покрытие в узлах трения), электронная микроскопия (фиксация биологических объектов), химическая промышленность (синтез аммиака, гидрирование органических соединений, ускорение процессов в топливных элементах), медицина (электрокардиостимуляторы, замещение легочных клапанов).

Интересные факты:

  • Оксиды осмия токсичны и могут повредить кожу и глаза: исследователь металлов платиновой группы Карл Клаус так сильно надышался парами тетраоксида осмия, что две недели не мог работать.
  • Наконечники перьевых ручек, сделанные с использованием осмия, служат дольше золотых и платиновых.
  • Оксид осмия черного цвета используют для росписи фарфора.
  • Осмий содержится в железных метеоритах, как и другие благородные металлы — то есть те, которые не ржавеют.
  • Из осрама, сплава осмия и вольфрама, делали нити для ламп накаливания — это слово позже выбрал своей торговой маркой крупный немецкий производитель светотехники.

Рутений

Описание: Металл яркого серебристо-серого цвета, природного происхождения.

Характеристика: Рутений — твердый и прочный металл, содержится в виде примеси в платиновых полиметаллических рудах и в двух видах минералов — лаурите и рутенарсениде. В чистом виде выделяется с помощью сложной химической обработки. По сравнению с остальными странами рутения много в России, Канаде и США, но его количество все равно ничтожно мало, чем и объясняется высокая цена. Температура плавления рутения — 2334 градуса Цельсия, а кипения — 4077 градусов Цельсия, что делает металл одним из самых износоустойчивых.

Применение: Тугоплавкий рутений нашел применение в ювелирном деле (повышение прочности изделий), электронной (увеличение срока работы электрических контактов), химической (улучшение сопротивления с агрессивными компонентами, ускорение процесса водоочистки на орбитальных станциях) и аэрокосмической промышленности (изготовление жаропрочных и антикоррозионных материалов).

Интересные факты:

  • Рутений был открыт в Казани профессором Карлом Клаусом — ученый выделил неизвестный доселе металл из уральской платиновой руды.
  • Название рутения образовано от латинского наименования России — Ruthenia.
  • Рутений — единственный платиноид, обнаруженный в составе живых организмов, и биологическая активность позволяет использовать его как средство лечения в онкологии и дерматологии.
  • Рутений может быть опасен — его высшие оксиды ядовиты и легко загораются.

Родий

Описание: металл серебристо-белого цвета с холодным блеском, природного происхождения.

Характеристика: Родий не встречается в чистом виде, только в соединениях с другими металлами: платиной, золотом, медью, никелем, осмистым иридием и родиевым невьянскитом — последний содержит 11,3 процента чистого родия. Порошковый родий — почти черный, а в виде металлических кристаллов похож на алюминий, но имеет холодный блеск. Большую часть металла добывают в ЮАР. Температура плавления родия — 1963 градуса Цельсия, температура кипения — 3727 градуса Цельсия.

Применение: Ювелирное дело (покрытие изделий для повышения их прочности, создание белого и черного золота, реставрация винтажных украшений), автомобильная (нейтрализация выхлопных газов), химическая (производство азотной кислоты) и ядерная промышленность (измерения нейтронного потока в атомных реакторах).

Интересные факты:

  • Название родия происходит от греческого слова «родос» («роза»), потому что в соединениях металл имеет розовый и темно-красный цвет.
  • Родий считался отходами производства платины, пока не были обнаружены его полезные свойства — значительная износоустойчивость и высокий коэффициент отражения света.
  • В метеоритах родия почти в четыре раза больше, чем в земной коре.
  • Из родия делают зеркала для лазерных установок: он отлично отражает свет и очень плохо плавится.
  • Родий может быть покрытием, но не материалом для изделий — он слишком хрупок.

Платина

Описание: Металл серебристо-белого цвета с глубоким блеском, природного происхождения.

Характеристика: Платина — гибкий, твердый, тугоплавкий и тяжелый металл с высокой износостойкостью, в биологической среде ведет себя неагрессивно. Металл встречается в самородках и сплавах, запасы обнаружены в ЮАР, США, Зимбабве, Канаде и России — самый большой платиновый самородок «Уральский гигант» весом около восьми килограммов хранится в Алмазном фонде. Температуры плавления и кипения — 1768,3 и 3825 градусов Цельсия соответственно.

Применение: Платина используется в металлургии (легирование при производстве высокопрочных сортов стали), химической промышленности (получение плавиковой и хлорной кислот и перекиси водорода), ювелирном деле и медицине (стоматология, лечение различных форм онкологических заболеваний). Кроме того, платину применяют в электронной промышленности, аэронавтике, производстве оружия, нефтехимии и многих других сферах.

Интересные факты:

  • В Древнем Египте из платиновых сплавов делали украшения и ритуальные изделия.
  • Платина была обнаружена в метеоритах — в Челябинском, например, ее в четыре раза больше, чем золота и серебра (по 20 и 5 граммов на тонну соответственно).
  • Название «платина» дали конкистадоры — это слово можно перевести с испанского как «серебришко», потому что металл, который не поддавался плавке, ценился вдвое ниже серебра. Испанские алхимики назвали платину «адским веществом» за высокую плотность: до тех пор, пока платину не увидела Европа, считалось, что в мире нет металла тяжелее золота.
  • Эталоны метра и килограмма в Палате мер и весов в Париже сделаны из сплавов платины и иридия.
  • Из платины сделан орден «Победа» — высшая военная награда СССР.

Золото

Описание: Металл желтого цвета с приглушенным блеском, природного происхождения.

Характеристика: Золото — прочный, тяжелый и пластичный нержавеющий металл с высокой теплопроводностью и низким электрическим сопротивлением. Температура плавления составляет 1064,18 градуса Цельсия, кипения — 2856 градусов Цельсия, при этом жидкое золото имеет свойство улетучиваться. Содержание золота в земной коре низкое, но добывать его позволяют месторождения — многочисленные крупные скопления металла, которых на данный момент больше всего в ЮАР, США, Австралии, Китае и России. Встречается как в чистом виде, так и в составе 15 минералов. Золото и медь — первые металлы, которые стали известны человечеству.

Применение: Банковское дело (использование в качестве элемента инвестирования; изготовление купюр); ювелирное дело, медицина (лечение аутоиммунных болезней, фармакологии, стоматология), электронная промышленность (изготовление и покрытие деталей электроприборов), металлургия (пайка металлов), стекольное дело (покрытие зеркал, работающих в дальнем инфракрасном диапазоне, оконных и витражных стекол для снижения теплопотерь). Также золото применяется в ядерных исследованиях, искусстве, пищевой промышленности и других сферах.

Интересные факты:

  • Золото бывает не только желтым, «черным» и «белым», но и «синим», «зеленым» и «фиолетовым», а изменение цвета достигается с помощью сплава, в основном с платиноидами, серебром и медью.
  • Латинское название золота, aurum, означает «сияющий рассвет».
  • В одном кубическом километре воды содержится 5 килограммов золота.
  • Каратами изначально называли семена цератонии, рожкового дерева, которые всегда весят одинаково — в древности они использовались как мера массы.

О золоте сняты десятки художественных и документальных фильмов, большая часть которых посвящена золотым лихорадкам — стихийным поискам драгоценного металла. Одна из них, как известно, захватила Аляску, и название реки, где были найдены самородки, стало синонимом богатства. Нет ни одного человека, который не знал бы, что такое Клондайк, и вряд ли найдётся тот, кому не хотелось попробовать найти золото самому. На поиски сокровищ отправятся и герои нового проекта Discovery Channel «Золотая лихорадка: бурные воды». Фред Хёрт и его сын Дастин вместе с командой дайверов и альпинистов обследуют ледяные реки и водопады Аляски, чтобы исполнить мечту и разбогатеть. Программа «Золотая лихорадка: бурные воды» выходит по четвергам в 22:00 на Discovery Channel.

Арина Коптева
Discovery Channel

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×