Termokings.ru

Домашний Мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Справочные материалы

Справочные материалы. Статьи

Основные понятия

При взаимодействии с атмосферным кислородом алюминий практически мгновенно окисляется с образованием тончайшей (менее 0,1 мкм) пленки оксида Al2O3 на его поверхности. Несмотря на столь малую толщину, такой оксидный слой обладает довольно высокой плотностью и предохраняет сам металл от дальнейшего окисления. Для увеличения толщины и улучшения физико-химических свойств оксидного покрытия в промышленности применяют так называемое оксидирование, т.е искусственное создание пленки оксида металла на поверхности изделия путем проведения окислительно-восстановительного процесса. В общем случае оксидирование применяется ко многим металлам (и сплавам на их основе) и неметаллам (например, Si), различая при этом термические, химические, электрохимические и плазменные методы оксидирования.

Под оксидированием изделий из алюминия и его сплавов в первую очередь подразумевают электрохимическое оксидирование, или анодное оксидирование. В промышленности и современной литературе к обозначению данного процесса наиболее часто применяют термин «анодирование».

Таким образом, анодирование – анодное оксидирование – изделий из алюминия (и сплавов на его основе) – это электрохимическое окисление алюминиевой поверхности изделия с целью создания на ней прочной оксидной пленки, обладающей защитными (либо защитно-декоративными) свойствами по отношению к данному изделию.

Механизм процесса

Рассмотрим механизм образования оксидной пленки на алюминиевой поверхности при ее окислении под действием электрического тока.

Рис. 1. Схема электролитической ячейки для анодного оксидирования алюминия. (1) – анод; (2) – катод; (3) – емкость с электролитом; (4) – анодный контакт; (5) – источник постоянного тока; (6) – анодируемые изделия; (7) – раствор электролита.

Замыкание цепи инициирует ток электронов и отрицательно заряженных ионов по направлению к аноду, протоны же перемещаются в противоположном направлении. В результате на электродах протекают следующие процессы:

На катоде: 6H+ + 6e_ → 3H2↑ (выделяется газообразный водород)

На аноде: 2Al0 + 3H2O – 6e- → Al2O3+6H+ (окисляется поверхность изделия)

Суммарная реакция анодного оксидирования алюминия записывается следующим образом: 2Al + 3H2O Н+,☇ Al2O3 +3H2↑

Количество образующегося оксида алюминия напрямую зависит от количества потребленного электричества, т.е. времени прохождения и плотности тока. Характер же формирования пленки по большей части определяется природой используемого электролита. В частности, при проведении анодирования в растворе серной кислоты слой оксида образуется по следующей схеме. На первом этапе образуется тонкий слой оксида алюминия (так называемый «барьерный слой»), а затем идет формирование сравнительно толстой пористой пленки, имеющей гексагональную ячеистую структуру (рис.2.)

После достижения пленкой заданной толщины (как правило, 15 – 20 мкм) процесс останавливают, а образовавшуюся пористую структуру сглаживают путем гидратации, что делает оксидный слой устойчивым при различных внешних воздействиях. В промышленной терминологии данная процедура носит название «уплотнение».

Пористость пленки оксида оказалась полезной с точки зрения декоративных свойств анодированных изделий, так как такая структура делает возможным внедрение красителей в приповерхностный слой путем, например, физической адсорбции. Достаточно погрузить анодированную заготовку, еще не прошедшую процедуру уплотнения, в раствор соответствующего красителя, чтобы получить изделие заданного цвета. Более того, полученная таким образом окраска значительно выигрывает по своим физическим свойствам в сравнении с классическим (жидким или порошковым) окрашиванием, благодаря локализации поглощающего свет вещества в глубине поры, а не на поверхности металла. В настоящее время существует широкий спектр растворимых красителей, применимых для декорирования анодированных изделий, как путем физической адсорбции, так и под действием электрического поля (электролитическое окрашивание анодированного алюминия и его сплавов).

Рис. 2. Структура слоя оксида алюминия, полученного методом анодного оксидирования в растворе серной кислоты 18 – 20 мас %.

Предварительная обработка поверхности перед анодным оксидированием

Конечный вид и качество изделий, прошедших полный технологический цикл анодного оксидирования, в большей степени определяется составом обрабатываемого сплава, предысторией производства заготовок и предварительной подготовкой поверхности перед анодированием.

Как правило, алюминиевую заготовку (очищенную от масляных, механических и других типов загрязнения) подвергают процедуре химического травления, в первую очередь призванной снять c поверхности естественный слой Al2O3. В зависимости от типа травящего раствора текстура поверхности конечного изделия меняется от слабо сатинированной (с различной степенью остаточного блеска) до глубоко матовой. В некоторых случаях химическое травление комбинируют с механической обработкой (щетки, абразивные ленты, шлифовальные круги и т.п.), приводящей к упорядоченной (направленной) структуре поверхности. Применение механической обработки позволяет получать более воспроизводимый результат и устранять дефекты сплава, с которыми «не справляется» химическое воздействие.

По европейской классификации [ISO 7599:2010(E)] различают девять способов предварительной обработки анодируемых изделий, включающих, как только химическое или только механическое воздействие, так и их комбинацию. Два из них – так называемые «Е0» и «Е6» – наиболее распространенные типы химического травления, не требующие механической обработки. Первый – самый простой. В этом случае поверхность только обезжиривается и грубо протравливается. Все дефекты (царапины и т.п.) остаются видимыми, и изделия имеют естественный цвет металла. В случае же Е6 механические дефекты визуально сглаживаются и поверхность становится матовой. По этой причине такой тип травления часто называют «матирование» или «сатинирование».

В настоящее время (особенно в случае анодирования алюминиевых профилей) матирование проводят в щелочных растворах с различными добавками при высокой концентрации растворенного алюминия. При этом с поверхности изделий в раствор переходит сравнительно большое количество алюминия (50 – 100 г/м2). В силу того, что дефекты только сглаживаются, но не устраняются полностью, иногда применяют кислотное «матирование».

После процесса травления на поверхности изделий проявляется темный налет (шлам), обусловленный содержанием в сплаве нерастворимых в щелочи компонентов (некоторые оксиды, интерметаллические соединения, кремний и пр.). Образующийся шлам можно удалить путем погружения изделий в 25 – 50 % раствор HNO3. При комнатной температуре достаточно 3 – 5 минут такой обработки для получения свободной от налета поверхности. Процесс очистки от травильного шлама носит название «осветление» (эквивалентные термины «деоксидирование», «декапирование», «нейтрализация» также часто применяются в литературе и промышленности).

В настоящее время большинство предприятий отказываются от применения азотной кислоты для осветления анодируемой поверхности и предпочитают применять для этих целей серную кислоту в сочетании со специальными добавками. Использование раствора осветления на основе H2SO4, содержащего препарат Alfideox 75, позволяет:

  • избавиться от проблем, связанных с содержанием токсичных производных азотной кислоты в сточных водах;
  • уменьшить окислительно-восстановительную активность сточных вод;
  • избежать загрязнения нитратами растворов анодирования и электролитического окрашивания;
  • исключить ванны промывки перед непосредственно анодированием, в результате чего добиться значительной экономии воды и рабочего пространства в цехе;
  • применять отработанный электролит анодирования, т.е. значительно сократить расходы на приготовление ванны.
Читать еще:  Цинк: характеристика, свойства, особенности металла

Таким образом, осветление является завершающим этапом подготовки изделий к анодному оксидированию.

Заключительная обработка

Изделия, прошедшие полный цикл предварительной подготовки, направляются в ванну анодного оксидирования, в которой происходит принудительное наращивание пленки оксида алюминия на поверхности. Механизм образования оксидной пленки был уже подробно рассмотрен выше, поэтому сразу перейдем к процессам заключительной обработки анодированной поверхности.

Как уже упоминалось, образовавшийся слой оксида имеет пористую ячеистую структуру, что с одной стороны вынуждает принимать специальные меры для ее сглаживания (уплотнения пор), а с другой – оказывается полезным с точки зрения придания декоративных свойств изделию, так как делает возможным внедрение красителей в приповерхностный слой. В современных технологических процессах выделяют три основных способа окрашивания алюминиевых изделий, прошедших анодное оксидирование:

  • Адсорбционное окрашивание (часто применяется не совсем корректный термин «химическое» окрашивание), основанное на физической адсорбции молекул красителя пористой поверхностью;
  • Электролитическое окрашивание – осаждение поглощающего видимый свет вещества в приповерхностный слой под действием электрического поля;
  • Интерференционное окрашивание (сравнительно новое и перспективное направление в промышленном анодировании) – это такой способ придания изделию того или иного цвета, который основан на интерференции лучей света, преломляемых в порах с различными оптическими свойствами. Применение красителей в классическом смысле этого слова здесь не подразумевается.

На заключительном этапе всей технологической цепочки анодирования проводят процедуру уплотнения анодного слоя. Наполнение пор ячеистой структуры обычно проводят либо путем гидратации, обрабатывая изделия горячей деминерализованной водой или паром, либо посредством реакции с неорганическими солями. Первый способ является в настоящее время наиболее распространенным. Он основан на поглощении порами молекул воды с последующим образованием бемита [AlO(OH)], «цементирующим» ячеистую структуру. Следует отметить, что в результате такой обработки на поверхности образуется порошкообразный осадок (так называемый «уплотнительный налет»), для предупреждения которого в раствор заблаговременно вводят специальные химические композиты. Макроскопические параметры процесса уплотнения горячей водой оказывают сильное влияние на качество конечного результата. Особое внимание следует уделять температуре, рН среды и степени очистки применяемой воды. Так, температура должна стремиться к точке кипения; допустимый интервал значений рН 5,6 – 6,6; степень очистки воды должны быть максимальной, причем наличие таких примесей, как фосфаты и соединения кремния недопустимо.

В силу того, что температура ванны горячего уплотнения поддерживается на высоком уровне, данный процесс с одной стороны является довольно энергоемким, а с другой – накладывает определенные аппаратурные сложности, связанные с постоянным испарением содержимого ванны. Оба этих фактора увеличивают себестоимость производства. Эти проблемы можно частично решить, применяя различные приемы. Для снижения испарений, например, рекомендуется покрывать поверхность раствора специальными полимерными поплавками. В общем случае, сложившаяся ситуация подтолкнула к разработке альтернативных низкотемпературных способов уплотнения анодного слоя, и в последние годы методики наполнения пор ячеистой структуры посредством реакции с солями кобальта или никеля находят все более частое применение. В качестве примера приведем схему химической реакции, лежащей в основе холодного уплотнения при помощи специальной добавки Alfiseal 982: Al2O3 + 2NiF2 + 4F- + 3H2O → Al(OH)F2 + 2Ni(OH)2 + OH- + AlF63-

Наиболее эффективной с точки зрения оптимального соотношения «цена-производительность-качество» считается схема заключительной обработки анодированной поверхности, комбинирующая последовательно процессы холодного и горячего уплотнения с применением соответствующих химических препаратов и присадок. Это позволяет существенно сократить расходы на дополнительный нагрев ванн и среднее время обработки изделий при высоком качестве. Следует, однако, принять во внимание, что в большинстве случаях комбинированное уплотнение требует непродолжительной заключительной сушки, а в сточных промывных водах содержатся ионы тяжелых металлов (в частности, никеля). Последний факт следует учитывать при проектировании очистных сооружений.

Химическое и электрохимическое оксидирование алюминия

Оксидирование —

процесс формирования оксидных пленок на поверхности металла. Оксидирование применяется для нанесения оксидных слоев, как в целях защиты, так и для придания металлическому изделию декоративных свойств.

Оксидирование металла можно проводить несколькими способами: химическое оксидирование; термическое оксидирование; анодное оксидирование (электрохимическое); пламенные методы (микродуговое оксидирование и др.).

Химическое оксидирование

Химическое оксидирование осуществляют обработкой изделия в растворах (расплавах) окислителей (хроматы, нитраты и др.). С помощью данного метода поверхность изделия пассивируют либо нанося защитные и декоративные слои. Для черных металлов химическое оксидирование проводится при температуре от 30 до 100 °С в щелочных либо кислотных составах. Для кислотного оксидирования используют, в основном, смесь нескольких кислот, например, азотная (или ортофосфорная) и соляная кислоты с некоторыми добавками (Ca(NO3)2, соединения Mn). Щелочное оксидирование проводится при температурах немного выше, около 30 – 180 °С. В состав вводят окислители. После нанесения оксидного слоя металлические изделия хорошо промываются и сушатся. Иногда готовое покрытие промасливают или дополнительно обрабатывают в окислительных растворах.

Защитные слои, полученные с применением химического оксидирования, обладают менее защитными свойствами, чем пленки, полученные анодированием.

Химическое оксидирование алюминия —

самый доступный, дешевый и простой способ получить оксидные пленки на алюминии и его сплавах. Метод химического оксидирования не требует подвода электрического тока. Процесс проводится в растворах хроматов и позволяет оксидировать большое количество деталей одновременно. По качеству полученные пленки уступают слоям, полученным методами, с использованием тока. Толщина оксидных слоев – около 2 – 3 мкм.

В связи с невысокими защитными свойствами окисных слоев, полученных химическим оксидированием, метод не нашел широкого применения (используется довольно редко).

Очень важно при химическом оксидировании алюминия и его сплавов постоянно контролировать температуру и состав электролита. При уменьшении концентрации щелочи в растворе для химического оксидирования – пленки получаются тонкие, а при увеличении и высокой температуре раствора — имеют рыхлую структуру.

Конечная обработка анодно-окисных слоев

Очень часто полученные защитные оксидные пленки подвергаются дополнительной обработке: окрашивание, уплотнение.

Уплотнение анодно-оксидных пленок на алюминии применяют для придания окисным слоям светостойкости, высокой коррозионной стойкости и повышения диэлектрических свойств. Процесс уплотнения основан на способности оксидных слоев впитывать влагу. Во время уплотнения часть оксидов превращается в гидроксиды, которые заполняют полые поры, тем самым уплотняя пленку. На производствах очень часто применяют для уплотнения горячую воду (температура порядка 100 °С). Качество уплотненных окисных слоев зависит от продолжительности обработки, температуры, характеристик самой пленки. Для того чтоб ускорить процесс, в воду добавляют ПАВ и соли. Полученная пленка может быть от светло-серого до темно-серого цвета.

Читать еще:  Что это — метод Роквелла? Метод определения твердости

Еще один способ уплотнения оксидных слоев на алюминии – обработка в растворе бихромата калия (около 40 г/л) при температуре 90 – 95 °С. Продолжительность – 20 – 25 минут. На вид пленка зеленого цвета (светлый или с желтоватым отливом).

Защитные свойства оксидных слоев, уплотненных различными способами, примерно одинаковы.

Окрашивание анодно-оксидных пленок на алюминии проводят для придания изделию декоративных свойств.

Окрашивание проводится в различного типа красителях. Оксиды алюминия очень хорошо впитывают и удерживают органические и неорганические красители.

Перед окрашиванием пленку необходимо тщательно промыть от остатков электролита. Процесс пигментации проводят методом окунания в ванну с красящими веществами. Интенсивность и насыщенность цвета зависит от пористости и толщины оксидного слоя.

При использовании органических красителей можно получить большую гамму цветов, но их светостойкость низкая. Чтобы повысить светостойкость уже окрашенные слои дополнительно обрабатывают в уксуснокислых растворах никеля, кобальта и борной кислоты.

При окрашивании с использованием органических красителей процесс ведет в два этапа. Алюминиевое изделие с готовой оксидной пленкой поочередно погружают в раствор одной, а потом другой соли. Между погружениями следует промывка. Процесс ведется при комнатной температуре. В каждом растворе обработка длится 5 – 10 минут.

Если окрашенная пленка должна эксплуатироваться в агрессивной коррозионной среде – ее дополнительно пропитывают парафином либо бесцветным лаком.

Уплотнение окисной пленки на алюминии при окрашивании не происходит.

Идея технологии кратко

Защитное покрытие создается за счет окисления поверхности алюминия кислородом, возникающим из воды при протекании тока (получаемый оксид алюминия слабо реагирует с прочими химическими элементами и соединениями).

Образующийся слой оксида алюминия частично разъедается кислотой: образуются многочисленные поры, через которые раствор воды и кислоты проникает еще глубже в материал. Создается толстый защитный пористый слой.

Затем поры заполняются красителем и/или герметизируются — защитная оболочка «запечатывается».

Анодное оксидирование алюминия в Москве

«Авиационный» металл считается одним из лучших вариантов во многих отраслях благодаря легкости, простоте обработки и минимальному риску коррозии. Но все равно даже это вещество часто подвергается анодному оксидированию в Москве. Причина проста — алюминиевые поверхности в чистом виде смотрятся непрезентабельно. Попытки нанести краску могут не увенчаться успехом, потому что она держится исключительно плохо. Анодное оксидирование эффективно решает эту проблему, одновременно побеждая такой недостаток алюминия, как неостановимое образование на его поверхности пленки окислов.

Если вам необходимо сделать анодное оксидирование в Москве воспользуйтесь базой нашего сервиса.

Анодно-оксидные покрытия разделяют на следующие группы:

  • защитные;
  • защитно-декоративные;
  • твердые;
  • электроизоляционные;
  • тонкослойные;
  • эматаль;
  • цветные или окрашенные.

Что касается состава анодно-оксидных покрытий, то тонкие беспористые пленки представляют собой в основном безводный оксид алюминия, который в чистом виде располагается у границы с металлом. В тонкие беспоритые анодные покрытия внедряются от 0,6 до 20 % борного ангидрида (для электролитов с борной кислотой), значительное количество других ионов.

На границе раздела оксид-электролит находят небольшую часть гидратированного оксида Al2O3*H2O. (бемит).

Пористые анодно-оксидные покрытия состоят в основном из аморфного оксида алюминия и частично включают гамма-Al2O3. Содержание воды в покрытиях, полученных в сульфатных и оксалатных электролитах, достигает 15%. В зависимости от условий формирования вода в оксидном покрытии моет находиться в составе бемита (Al2O3*H2O) или байерита (Al2O3*3H2O). Покрытия содержит значительное количество анионов электролитов, массовая доля которых, %: до 14 сульфата, до 3 оксалата, менее 0,1 хрома.

Наибольшее количество анионов находится в наружном слое покрытий. 50-60% анионов удерживаются капиллярными силами в порах, остальные прочно связаны с оксидами и распределены достаточно равномерно по толщине покрытия. Последние называют структурными анионами. Примеси металлов, содержащиеся в сплавах алюминия, в большинстве своем остаются в оксидной пленке (железо, медь, кремний, магний, кальций). Цинк и титан присутствуют в виде следов с содержанием 0,1%. В цветных анодно-оксидных пленках обнаруживаются включения углерода, серы и их оксидные соединения, которые и придают окраску.

С увеличением количества примесей в металле, повышением температуры электролитов и плотности анодного тока увеличивается нерегулярность микроструктуры оксидных покрытий (нарушается перпендикулярность роста ячеек и пор, их параметры становятся более неравномерными). Наиболее хаотичная структура наблюдается в пленках, сформированных на алюминиевых сплавах в растворах хромовой и ортофосфорной кислот.

Плазменное электролитическое оксидирование металлов и сплавов в тартратсодержащих растворах

В монографии рассмотрены вопросы, связанные с изучением взаимосвязи физико-химических свойств (термостойкости, твердости, антикоррозионных xapaктeристик) поверхностных слоев, формируемых методом плазменного электролитичеcкого оксидирования на титане и алюминии, с условиями их получения, строением и структурой анионных комплексов, образуемых на основе соединений алюминия и карбоновых оксикислот в растворах электролитов. Рассмотрены процесс формирования защитных покрытий на титане и алюминии в тартратсодержащих электролитах, а также влияние формы импульсов поляризующего напряжения, их длительности на морфологию, фазовый состав и твердость формируемых поверхностных слоев. Книга предназначена для научных, инженерно-технических работников, acпирантов, а также студентов, занимающихся проблемой направленного электрохимческого синтеза оксидных слоев с определенными химическими свойствами на поверхности вентильных металлов.

Использование материалов ЭБ РФФИ

Воспроизведение материалов из ЭБ в любой форме требует письменного разрешения РФФИ. Пользователи вправе в индивидуальном порядке использовать материалы, находящиеся на сайте РФФИ, для некоммерческого использования.

Пользователь обязуется не осуществлять (и не пытаться получить) доступ к каким-либо материалам ЭБ иным способом, кроме как через интерфейс Сайта.

Пользователь обязуется не воспроизводить, не дублировать, не копировать, не продавать, не осуществлять торговые операции и не перепродавать материалы ЭБ для каких-либо целей.

Другие произведения в разделе:

НазваниеАвторРубрикаНомер грантаТекст
1CVD-метод. Химическое парофазное осаждениеСыркин В.Г.химия и науки о материалах98-03-46021
2II Российский симпозиум по химии и биологии пептидов:Тезисы докладов и стендовых сообщенийнет данныххимия и науки о материалах05-04-58016
3«Маточное вещество» медоносных пчел: свойства, синтез, применение в пчеловодстве и шмелеводствеИшмуратова Н.М.
и др.
химия и науки о материалах, биология и медицинские науки15-03-07002
4Адаптация внутрикамерных процессов и элементов конструкции энергоустановок на порошковом горючем к технологиям получения ультра- и нанодисперсных материалов: монографияКрюков А.Ю.химия и науки о материалах11-08-07024
5Адгезия модифицированных эпоксидов к волокнамГорбаткина Ю.А., Иванова-Мумжиева В.Г.химия и науки о материалах18-13-00035
  • Книги, изданные при поддержке РФФИ
  • Вестник РФФИ, издание на русском языке
  • Вестник РФФИ, издание на английском языке
  • Вестник РФФИ. Гуманитарные и общественные науки
  • Научно-популярные статьи и фотоматериалы
  • Аннотированные отчеты по проектам РФФИ

© 1992–2020, Российский фонд фундаментальных исследований

Россия, 119334, Москва, Ленинский проспект, 32а, 20-21 этаж
Телефон для справок: +7 (499) 941-01-15

Цинкование.

Цинковые покрытия в основном применяют для защиты стальных деталей от коррозии.

Цвет цинковых покрытий с применением блескообразующих добавок:

  • — без хроматной пленки — светло-серый,
  • — с хроматной пленкой — радужный с цветами побежалости;
  • — при бесцветной пассивации — серебристый;
  • — при черной пассивации — черный.

Никелирование.

Никелевые покрытия применяют как в качестве подслоя, так и самостоятельно для защитно-декоративных и специальных целей, с применением блескообразующих добавок для стальных, медных, латунных деталей.

На стальные детали наносят подслой меди.

Они характеризуются значительной коррозионной стойкостью и хорошей отражательной способностью.

Детали, покрытые никелем, могут быть блестящими, матовыми, износостойкими, черными.

Меднение.

Медные покрытия применяют для защитно-декоративных целей при эксплуатации в помещениях, а также в качестве подслоя под никель, хром, серебро, золото и др. для изделий из стали, латуни.

Электрохимические покрытия медью не следует применять в качестве самостоятельных защитно-декоративных покрытий без дополнительного нанесения других покрытий или специальных лаков, так как в атмосферных условиях они легко взаимодействуют с влагой и углекислотой воздуха. В атмосферных условиях и ряде агрессивных сред медь с железом образует гальваническую пару.

Детали, покрытые медью, могут быть матовыми и блестящими.

Покрытие Оловом.

Покрытие оловом применяется для защиты консервной тары и других изделий, связанных с хранением, приготовлением и транспортированием пищевых продуктов, т.к. продукты коррозии Олова почти безвредны для человека.

Оловянные покрытия после обработки в глицерине хорошо паяются, а оплавленные не теряют этого свойства в течение длительного времени.

Детали, покрытые оловом (олово-висмут), могут быть матовыми и блестящими и наносятся на стальные, медные и латунные изделия.

Анодное оксидирование алюминия и алюминиевых сплавов.

Окисные покрытия на алюминий применяют для защиты деталей от коррозии, истирания, для декоративной отделки полированных поверхностей.

Защитно-декоративное анодное покрытие может быть бесцветным или серым в зависимости от химического состава обрабатываемого сплава.

Покрытие характеризуется хорошими защитными свойствами, окрашивается органическими красителями в различные цвета, также используется в качестве грунта для лакокрасочных покрытий.

Цвет износостойкого (глубокого) покрытия изменяется от темно-серого до черного. Покрытие характеризуется высокой стойкостью к истиранию, особенно после пропитки его смазочными маслами.

Цвет электроизоляционного покрытия изменяется от серого до темно-серого.

Цвет анодизационно-оксидированного и хроматированного покрытия изменяется от светло-зеленого до желто-зеленого. Цвет окрашенного покрытия соответствует цвету красителя или эталона. На плакированном материале оттенок не нормируется. После промасливания покрытие блестящее.

Химическое оксидирование.

Химическое оксидирование алюминия и алюминиевых сплавов применяется для защиты от коррозии.

На поверхность наносят окисные пленки химическим методом.

Окисно-фосфатно-фторидное покрытие обладает электроизоляционными свойствами.

Окисно-фторидное покрытие является токопроводящим, обеспечивает стабильное электрическое сопротивление.

Имеется три вида химического окисного покрытия на алюминии и его сплавах:

окисное (Хим. Окс.) — цвет покрытия от светло-серого до желтого;

Окисно-фосфатно-фторидное (Хим.Окс.Фос.) — цвет покрытия от светло-голубого до темно-голубого, от бирюзово-зеленого до желтого;

окисно-фторидное (Хим.Окс.э) — цвет покрытия от желто-золотистого до коричневого.

Химическое оксидирование стали — «Воронение».

Защитная способность и механическая прочность окисного покрытия невысока.

Для повышения коррозионных свойств окисного покрытия применяют пропитку маслами.

Цвет покрытия на деталях из углеродистых и низколегированных сталей — черный с синеватым отливом.

Химическая пассивация латуни и меди.

Химическая пассивация меди и медных сплавов применяется в качестве самостоятельных защитно-декоративных свойств поверхности детали.

Цвет и блеск при данной обработки зависит от первоначальной чистоты поверхности и химического состава меди и его сплавов.

Цвет латуни — золотой

Цвет меди — от глубоко розового до красного.

Кадмирование.

Покрытие кадмием железных и стальных изделий применяется в целях предохранения их от коррозии на воздухе и в морской воде.

Кадмиевые покрытия эластичны, легко поддаются развальцовке, штамповке, изгибам; свежеосажденные покрытия хорошо паяются с бескислотными флюсами.

Способность их к пайке после хранения значительно лучше, чем у цинковых покрытий. Химические свойства кадмия аналогичны свойствам цинка, однако он более устойчив в кислых растворах и в щелочах.

Цвет кадмиевого покрытия – салатовый, хаки.

Процесс анодирования

Перед конкретно анодированием алюминий должен проследовать по следующему технологическому процессу:

Анодируемую деталь необходимо сначала очистить, чтобы удалить все включения масел, полирующих составов и других примесей. Это делается путем погружения в водный раствор, который содержит мягкие кислоты или щелочи вместе с различными моющими средствами.

Предварительная обработка.

Этот этап в основном для эстетических целей, он улучшает внешний вид поверхности перед этапом анодирования. Самая распространенная предварительная обработка это травление, при котором поверхность приобретает атласный или яркий оттенок, что дает яркий блестящий оттенок.

Анодирование.

Анодирование алюминия – это электрохимический процесс. Проще говоря, он включает извлечение алюминиевого сплава и погружение его в большой резервуар, заполненный раствором электролита. Чаще всего это раствор на основе серной кислоты и дистиллированной воды. Хотя точный тип используемой кислоты зависит от области применения. Электрический ток проходит через алюминиевую часть, в этом случае алюминий действует как анод.
Катод производят из алюминия или свинца и также помещают в гальваническую ванну. Вода расщепляется, высвобождая кислород на поверхности алюминия, а затем объединяется, образуя покрытие, тонкий прозрачный слой оксида алюминия. Толщина этого покрытия определяется уровнем электрического тока, а также количеством времени, в течение которого он подается.

3 Тонкости термического и плазменного оксидирования

Термический процесс подразумевает, что оксидная пленка формируется на стали в атмосфере водяного пара либо иной кислородсодержащей среде при достаточно высоких температурах. В домашних условиях такую операцию не выполняют, так как она требует использования специальных печей, в которых железо либо низколегированные стали нагревают примерно до 350 градусов.

Если же речь идет об обработке средне- и высоколегированных сталей, температура в печи и вовсе должна равняться 650–700 градусам. Общая длительность термического оксидирования, как правило, составляет около часа.

Практически нереально выполнить в домашних условиях и плазменное оксидирование. Оно производится в низкотемпературной плазме, содержащей кислород. Плазменная среда при этом создается обычно посредством ВЧ- и СВЧ-разрядов, реже применяются разряды постоянного тока. Качество получаемых защитных пленок оксидов при плазменном процессе очень высокое. Поэтому его применяют для нанесения покрытий на ответственные детали:

  • кремниевые поверхности;
  • полупроводниковые изделия;
  • фотокатоды.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×