Termokings.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое блуждающие токи и как от них избавиться

Что такое блуждающие токи и как от них избавиться?

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.). После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи. Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Первый способ

Организовать правильное заземление полотенцесушителя. Возможно три варианта, в зависимости от материалов стояка и труб.

В целях безопасности следует заземлять и другие токопроводящие объекты – например, стальную или чугунную ванну.

Стояк и отводы из металлических труб

Соединить надёжным контактом сам стояк горячего водоснабжения с медным проводом сечением не менее 4 мм 2 при помощи хомута или приварки лепестка с болтовым соединением.

Далее этим проводом присоединиться к РЕ-шине ближайшего этажного электрощита (провод заземления обозначается жёлто-зеленым цветом).

Стояк и отводы из полимерных труб

(металлопластиковые, полипропиленовые, полиэтиленовые)

Требуется установка металлической вставки между шаровым краном и непосредственным присоединением полотенцесушителя. Например, можно использовать бочонок или ниппель соответствующего трубного диаметра.

На вставку установить зажим заземления и медным проводом сечением 4 мм 2 соединиться с заземляющей РЕ-шиной ближайшего электрощита (провод заземления обозначается жёлто-зеленым цветом).

Стояк комбинированный

Установить металлическую вставку (бочонок или ниппель соответствующего трубного диаметра) между шаровым краном и полотенцесушителем.

На вставку установить зажим заземления и соединиться медным проводом сечением 4 мм 2 со стояком водоснабжения.

Далее таким же проводом соединить между собой «разорванные» части металлического стояка и проложить от места соединения провод к РЕ-шине ближайшего электрощита (провод заземления обозначается жёлто-зеленым цветом).

Второй способ

Более грамотный вариант решения проблемы электрохимической коррозии – организация дополнительной системы уравнивания потенциалов (ДСУП) в ванной комнате. Именно такой способ поможет не только избежать электрокоррозии, но и обезопасить людей от поражения электрическим током, который может внезапно появиться на трубах из-за грубейших ошибок электриков или умышленного воровства электричества.

1. В доступном для обслуживания месте устанавливается коробка уравнивания потенциалов (КУП), представляющая собой пластиковый корпус, в котором расположена заземляющая шина.

2. К ней присоединяются медные провода сечением 4 мм 2 от всех токопроводящих элементов: водопроводной, отопительной, газовой и вентиляционной систем, а также от всех находящихся в ванной комнате электроприборов и электрических розеток (если последние не имеют штатного заземления).

Если разводка выполнена полимерными трубами (металлопластиковыми, полипропиленовыми, полиэтиленовыми), то в КУП также подсоединяются заземляющие провода от водопроводных кранов и смесителей.

Провода с перечисленными компонентами соединяются с помощью хомутов или болтовых соединений. Важный момент: чтобы ДСУП бесперебойно срабатывала во всех потенциально опасных ситуациях, нужно обеспечить надёжный контакт между всеми токопроводящими объектами.

Коробка уравнивания потенциалов

3. После этого саму заземляющую шину соединяют медным проводом сечением не менее 6 мм 2 с РЕ-шиной квартирного электрического щита, а он уже подключается к главной заземляющей шине (ГЗШ) во вводном распределительном устройстве (ВРУ) здания. Очень важно проложить этот провод так, чтобы он не пересекался с другими кабелями.

Схема организации дополнительной системы уравнивания потенциалов (ДСУП) в ванной комнате

Чтобы грамотно устранить такую серьёзную проблему как электрохимическая коррозия, необходимо прежде всего обратиться к инженеру вашей управляющей компании. Именно он даст вам первичную консультацию и посоветует, какой водяной полотенцесушитель лучше всего подойдет для использования в вашей квартире.

Установку доверяйте исключительно квалифицированному специалисту, имеющему соответствующий допуск к работам. После установки прибора инженер проведёт необходимую опрессовку (проверку избыточным давлением на герметичность), подтвердит исправность полотенцесушителя и оформит акт ввода в эксплуатацию.

Помните, что от правильной установки прибора зависит не только длительная исправная работа полотенцесушителя, но и ваша безопасность!

Электрокоррозия полотенцесушителя и водонагревателя

Электрокоррозия – это коррозия материалов под влиянием электрического тока от внешнего источника (коррозия блуждающих токов)

Признаки электрокоррозии – это единичные или множественные потемнения корпуса полотенцесушителя с образованием пор (мелких сквозных отверстий) на сварочных швах и ровных участках поверхности трубы.

Электрокоррозия на полотенцесушителе

К сожалению, у современных полотенцесушителей, какой бы вы ни выбрали: водяной, электрический, из нержавейки или комбинированный, — существует определенная проблема при их использовании, а именно электрокоррозия полотенцесушителя.

Читать еще:  Теплоотдача радиаторов отопления: таблица показателей основных видов

Если вы заметили, что полотенцесушитель (даже из нержавейки) начинает постепенно покрываться пятнами ржавчины, — это признаки электрокоррозии метала. Причины ее образования в том, что металлические конструкции, находящиеся в воде, подвергаются двум видам коррозии: гальванической и коррозии, которую вызывают блуждающие токи. Второй вариант возможен в том случае, если металл, по которому уже протекает электрический ток, дополнительно подвергается воздействию воды. Вследствие такой нагрузки появляются так называемые пробои, от которых распространяется коррозия металла.

Этот вид электрокорозии отличается от гальванической, хотя у них одна природа появления. Гальваническая коррозия возникает из-за соединения двух разных видов металла.

Блуждающие токи возникают не только из-за внешних, но и из-за внутренних источников, а именно в связи с коротким замыканием. Теоретически при правильном строительстве коротких замыканий в системе быть не должно, но на практике получается по-другому. В каких-то местах сварочное соединение заменяют на обычные сгоны или меняют кусок трубы на металлопласт, поэтому возникают блуждающие токи, и все это приводит к электрической и электрохимической коррозии.

Особенно подвержены этим видам электрокорозии подземные коммуникации, так как они проходят через разные виды грунта. Дополнительная опасность возникает, если эти коммуникации проложены рядом с местами с повышенными электрическими затратами. Сама проблема возникновения коррозии на полотенцесушителях заключается в том, что большинство людей сейчас пытается заменить старые трубы на пластиковые, предполагая, что от этого исчезнут блуждающие токи. Но чаще получается совсем наоборот.

Когда весь стояк состоит из металлических труб, а в квартирах их заменяют на пластиковые, возникают блуждающие токи из-за разных видов труб. Все это происходит потому, что все металлические трубы при постройке заземлены. В новых домах, например, заземление происходит через систему уравнения потенциалов, а в старых в подвалах — по контуру заземления. А при установке пластика эта металлосвязь между трубами и полотенцесушителем нивелируется, и появляются блуждающие токи. Следовательно, разрывается уже существующий потенциал: получается, что на стояке он будет один, а на полотенцесушителе — другой.

Как защитить полотенцесушитель от корозии

Как защитить новый полотенцесушитель от такой проблемы? Ответ достаточно прост: необходимо обеспечить серьезную металлическую связь между двумя трубами, а именно между трубами стояка и самим устройством. Тогда блуждающие токи устранятся. Проще говоря, нужно заземлить полотенцесушитель к металлическим трубам стояка. Если трубы водопровода в квартире выполнены из метала, вопросов об их дополнительном заземлении не должно возникнуть.

Каждая ванная комната также имеет заземление на трубопровод отдельным проводником, потому что у нее нет другой связи с водопроводной трубой.

Когда в моду вошло использование пластиковых труб, о заземлении стали мало задумываться, так как металлопластиковая труба похожа по токопроводимости на металлическую. Но это большое заблуждение. Не существует соединительных элементов, обеспечивающих контакт между алюминием и металлопластиковой трубой.

Получается так: вода имеет высокую токопроводимость, чтобы подвести накопившееся опасное напряжение в безопасное место, но она недостаточно проводима, чтобы защитить пользователя от нежелательного разряда тока. К тому же при движении вода трется о стенки труб и сама образует определенный заряд, который затем скапливается на металлических элементах, что тоже может привести к коррозии.

Как показывает практика, токи в системе отопления большой опасности не представляют, а вот их скопление и наличие в полотенцесушителях массово наносят вред здоровью пользователей, которые могли не знать, забыть или проигнорировать факт необходимости заземления металлопластиковых труб. Особенно это опасно, когда в доме находятся дети.

Итак, при установке металлопластиковых и пластиковых труб все металлические элементы существующей и новой системы водопровода необходимо заземлять (в том числе и отопительные батареи, полотенцесушители, раковины, ванны и другие металлические элементы, которые могут проводить скопившийся ток).

Заземление водонагревателя

Почему-то мало кто уделяет должное внимание вопроса как правильно заземлить водонагреватель.

Роль заземления в водонагревательном баке не ограничивается только своей функцией защиты человека от поражения электрическим током — существует и масса других причин, заставляющих не на шутку задуматься о его наличии. Дело в том, что в своём большинстве накопительная ёмкость для горячей воды производится из нержавеющей стали. С одной стороны это, конечно, хорошо — долговечный, неподверженный коррозии металл способен прослужить долгие годы. А вот с другой стороны нержавеющая сталь довольно-таки сильно подвержена воздействию блуждающих токов, для отвода которых как раз и используется защитное заземление, именно они способны поразить человека электрическим разрядом.
На нержавеющую сталь эти блуждающие токи влияют очень сильно — проходя через тонкий металл, ток оставляет в нём микроскопические поры, которые впоследствии становятся всё больше и больше, тем самым нарушая герметичность всей конструкции в целом. Чтобы немного уменьшить воздействие этого неблагоприятного фактора, в водонагревательный бак устанавливается анод — помимо избавления воды от солей и других примесей он выполняет функцию «громоотвода», собирая все блуждающие токи.
При отсутствии надлежащего заземления этим токам просто некуда будет деваться, и даже при наличии полноценного анода статистическое напряжение будет накапливаться и выводить из строя водонагревательный бак.

Читать еще:  Резка алюминия — плит, листов, кругов, прутков, бокса.

Способы устранения

Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.

Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.

В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.

Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.

Активная и пассивная защита

Существует два основных способа защиты:

    Пассивная — предупреждает контакт металла за счёт применения покрытий из диэлектрических материалов. Именно для этой цели применяют обмазку битумными мастиками, обмотку диэлектрическими изолентами, комбинацию этих способов. Но такие трубы стоят дороже, а проблема полностью не решается, потому что при глубоких повреждениях подобных покрытий защита практически не работает.

Пассивная защита
Активная — основана на отводе блуждающих токов от защищаемых магистралей. Может быть выполнена несколькими способами. Считается наиболее эффективным решением.

Активная защита

В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.

Защита полотенцесушителей

Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.

Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.

Защита водопроводных труб

В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.

Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.

Защита газопроводов

Для защиты этих объектов применяют два способа:

  • Катодная защита, при которой трубе придают отрицательный потенциал за счёт применения дополнительного источника питания.
  • Электродренажная защита предполагает соединение газопровода с источником проблем проводником. При этом предотвращается образование гальванической пары с окружающим магистраль грунтом.

Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.

Замкнутый гальванический элемент

Покрытие ржавчиной стальных деталей, находящихся во влажной среде — наиболее распространенный пример электрохимической коррозии. В природе не бывает абсолютно чистой воды, в ней всегда есть примеси, которые проводят электричество. Значит, обычная, не дистиллированная, вода всегда является электролитом. В реально существующем железе имеются неоднородности, обусловленные кристаллической структурой и всевозможными примесями. Из-за этого на поверхности металла есть зоны с разным электрохимическим потенциалом. Попадание влаги на поверхность обычной стали вызывает образования большого количества микроскопических гальванических элементов, замкнутых на себя. В них протекают токи, вызывающие электрохимическую коррозию. Их значения ничтожно малы, но на протяжении длительного времени происходят серьезные разрушения.

Читать еще:  Сфера применения алюминия и его сплавов.

Более сильная электрохимическая коррозия возникает, когда в электролит помещаются два предмета, выполненные из разных материалов. Тогда разница потенциалов между ними достигает нескольких вольт, значение силы тока тоже весьма велико. По сути, образуется полноценный гальванический элемент. Такая коррозия наблюдается в недорогом сантехническом оборудовании неизвестного происхождения.

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации. Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных. После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Анод требует периодической замены, так как со временем происходит его разрушение.

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие — выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной.

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание.

Электрическая коррозия (электрокоррозия)

Блуждающие токи, исходящие от трамвая, метро, электрических железных дорог и различных электроустановок, работающих на постоянном токе, вызывают электрокоррозию. Такие токи разрушают подземные металлические сооружения, трубопроводы, электрокабели, приводят к появлению на металлических предметах, находящихся в земле, участков входа и выхода постоянного тока. Вследствие этого на металле образуются катодные и анодные зоны, причем анодные зоны, т.е. места выхода тока, подвергаются коррозии (рис. 4).

Рис. 4.
Схема электрокоррозии
под действием блуждающих токов:
1 – провод; 2 – рельс; 3 – влажный грунт;
4 – труба; 5 – электродвигатель трамвая;
6 – сопротивление в стыке рельса

Блуждающие токи достигают 300 А и действуют в радиусе нескольких десятков километров. Процесс в анодных зонах:

Fe – 2e = Fe 2+ .

Процессы в катодных зонах:

2H + + 2e = H2

Блуждающие токи от источников переменного тока вызывают слабую коррозию у подземных изделий из стали и сильную у изделий из цветных металлов.

Коррозия металлов протекает непрерывно и причиняет огромные убытки. Подсчитано, что прямые потери от коррозии железа составляют около 10% от его ежегодной выплавки. В результате коррозии металлические изделия теряют свои ценные технические свойства.

Ежегодные потери металла при коррозии оборудования, используемого только в животноводстве, составляют около 60 тыс. тонн. Поэтому защита металлов от коррозии – очень важная задача.

Подземные коммуникации и углубленные металлоконструкции необходимо защищать от блуждающих токов с соблюдением определенных правил:

  • монтировать изолирующие фланцы на источниках блуждающих токов;
  • использовать электроизоляционные трубные опоры, которые повышают сопротивление между грунтом и трубопроводом;
  • трассы теплосетей необходимо размещать на большом удалении от рельсовых дорог;
  • устанавливать поперечные перемычки между параллельно расположенными трубопроводами.

Для защиты металлических конструкций, оборудованных изоляцией, требуется специальный протектор из активного металла, который будет выполнять функцию анода. Подобная накладка примет на себя основную часть коррозионного разрушения, в то время как основная конструкция останется целой.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×