Termokings.ru

Домашний Мастер
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цифровая паяльная станция 3 в 1 (DSS-1)

Цифровая паяльная станция 3 в 1 (DSS-1)

Идея создания самодельной паяльной станции у меня возникла давно, но так как я программирую микроконтроллеры не более года, и на просторах интернета подходящей мне паяльной станции я не нашел, то решил сделать паяльную станцию своими руками. Те, кто скажут, что можно купить готовую – могут дальше не читать.

Преимущество данной конструкции в том, что она имеет небольшое количество компонентов и все реализовано на одном микроконтроллере. Также в схеме присутствует дополнительный выход «EXT», куда можно дополнительно подключать паяльник на 40-500Вт / 220В или любую другую инерционную нагрузку.

Характеристики

— напряжение питания – 220В / 50Гц
— максимальная нагрузка выхода «EXT» — не более 1кВт (зависит от симмистора T1)
— номинальная нагрузка выхода «FEN» — около 200-300Вт.
— ток потребления цифровой части схемы – не более 150мА.
— диапазон регулирования температуры паяльника 150 – 350 °C **.
— точность стабилизации температуры ±2 °C
— дискретность установки температуры фена — 10 °С **;
— дискретность установки температуры паяльника — 5 °С **;
— широтно-импульсное пропорциональное регулирование с возможностью подбора коэффициентов пропорциональности, для более точной стабилизации температуры;
— программная корректировка наклона температурной характеристики с установкой коэффициента наклона) ***;
— защита от обрыва термопары;

** (путем изменения прошивки диапазон можно расширить).
*** (программно данная опция отключена, но в исходнике присутствует).

Принципиальная схема паяльной станции приведена ниже.

Элементная база

За основу данной самодельной станции взят микроконтроллер фирмы Atmel ATMega8, который имеет у себя на борту 10-ти битный аналогово-цифровой компаратор, 3-х канальный ШИМ (2 канала по 10 бит и 1 канал 8 бит), аппаратный USART, целую кучу портов ввода-вывода и другие вкусности, но мы их использовать не будем. (IC1 – ATMega8) настроена на работу от внутреннего RC генератора 4MHz. Также включен загрузчик на 512 байт (об этом ниже).

Регистр сдвига (U2 – 74HC595) используется для управления светодиодами. В схеме нарисовано 4 светодиода, на самом деле это два, но двухцветных (в «Proteus-е» и «DipTrace» подходящих я не нашел). Светодиоды подключаются через токоограничительные резисторы. Остальные 4 пина не используются, но могут быть использованы для чего угодно (зуммер, светодиоды, релюшки. и т.д.)

Регистр сдвига (U3 – 74HC595) и (U1 – CD4028B) используется для управления динамической индикацией и опросом кнопок. Индикаторы подключены к выходу дешифратора (U1) через эмиттерные повторители на транзисторах.

Стабилизатор (U7 – LM317) служит для управления скоростью вращения вентилятора фена (обвязка из даташита), а (Q1 – IRFZ44) включает и выключает его.

Стабилизатор (U9 – 78L05) служит для питания всей цифровой части схемы. Его обязательно нужно устанавливать на радиатор, так как на нем гасится около 6 ватт.

Усилители термопар выполнены на (U5 – LM358). От себя хочу добавить, что самая «слабая» часть схемы – это именно они. Сколько я не пытался, но добиться линейности показаний у меня так и не получилось.

На транзисторах VT1 и VT2 реализована схема детектора пересечения нуля (программно это еще не реализовано).

Блок симисторов:

Ничего сверхъестественного – обычный MOC3063 с автоматическим детектором пересечения нуля, и его обвязка взята из даташита.

Блок управления и отображения информации:

В устройстве используется 3 спаренных трехзнаковых семисегментника с общим катодом, выдранных из телефона «Русь», 2 двухцветных светодиода, 9 кнопок управления (2 из которых не задействованы).

Также в схеме «Proteus-а» имеется 2 кнопки (Х1, Х2) которые используются для эмулирования нажатия 2-х кнопок (+/-) одновременно.

Блок питания:

Трансформатор от магнитофона «Романтика 222» 4.704.282 или любой другой с напряжением вторичной обмотки 24 вольта (у меня 22 вольта). Диодный мост (D14 – RS407) и диод (D17 – S20C40) от блока питания компьютера.

Прошивка + загрузчик (Bootloader):

Так как мне хотелось поскорее запустить собранное устройство, было принято решение оставить свободным USART для дальнейших издевательств, поэтому на плате не предусмотрено место под MAX232. Хотя оно особо и не нужно. У меня переходника нет, а вместо него я использую обычный телефонный переходник на PL2303, подключенный напрямую.

Прошивка контроллера содержит подробные комментарии и без переделки может быть залита в кристалл без загрузчика. Однако Fuse биты придется немного изменить.

Прошивка загрузчика (Bootloader-а) полностью взята easyelectronics.ru/avr-uchebnyj-kurs-ispolzovanie-bootloadera.html у DI HALT-а, единственное, я ее немного переделал под себя (о чем имеются комментарии «//***** МОЙ КОД ****» в исходнике загрузчика). Его работу описывать не буду, всё есть на страничке источника.

Положительным результатом входа в загрузчик, является появление на дисплее буквы «F» с точкой в 6-м сегменте.

Загрузчик имеет размер 512 байт, умеет читать и писать Flash и Eeprom, для начала – более чем! Одно НО – выставляйте скорость USART BAUDRATE 19200. Я первое время ставил 9600 и долго не мог понять, почему нет связи с контроллером. Для прошивки через загрузчик используется программа, которая идет в составе AvrStudio4 и находится в папке, она так и называется «AvrProg.exe»

В случае, если Вы не хотите использовать загрузчик при прошивке контроллера необходимо убрать галочку на бите «BOOTRST».

Фен:

Фен самый обыкновенный от паяльной станции Lukey-702 и был куплен за 212 грн.

Паяльник:

Паяльник как видно на фото рассчитан на 220В. «Made in Podval» – сгорел он у меня примерно через два дня. Потом на радиорынке я купил нагревательный элемент Lukey-SENSOTRONIK (для 702/898/852D+FAN) нагреватель 24В, 48Вт со встроенной термопарой, но он оказался меньшего диаметра и длины, поэтому пришлось доматывать алюминиевую фольгу. Теплоотдача никакая, но хватает.

Читать еще:  Как правильно выставить ножи на электрорубанке?

Работа с паяльной станцией

Светодиоды: при нагревании до заданной температуры горит «красный» светодиод, если температура находится в пределах +/-5 градусов от заданной – горит «зеленый» светодиод, если температура превышает заданную более чем на 5 градусов – мигает «красный» светодиод. В случае обрыва термопары попеременно мигает «красный» и «зеленый» и на индикаторе показывает «Err» (нагрузка при этом обесточивается).

Паяльник:

Работа с паяльником осуществляется 3-мя кнопками «Solder on/off», «+5», «-5»

— при включенном паяльнике нажатие на «+5», «-5» соответственно увеличивают/уменьшают заданную температуру о чем свидетельствует мигание индикатора.
— при выключенном паяльнике и продолжительном одновременном нажатии «+5» и «-5» на экран выводится «поправочный коэффициент» в единицах ШИМ (у меня 415 – это число означает, сколько единиц нужно добавить к расчетной ШИМ, чтобы удерживать заданную температуру).

Фен:

Работа с феном осуществляется 3-мя кнопками «Fen on/off», «+10», «-10»

— при включенном фене нажатие на «+10», «-10» соответственно увеличивают/уменьшают заданную температуру о чем свидетельствует мигание индикатора;
— при выключенном фене и продолжительном одновременном нажатии «+10» и «-10» на экран выводится «поправочный коэффициент» в единицах ШИМ (у меня 160);
— после выключения фена на индикаторе мигает текущая температура фена и работает вентилятор пока фен не остынет до температуры менее 30 градусов. Если в это время продолжительно нажать «+10» и «-10» на экран выводится «поправочный коэффициент» (см. выше), после чего отображение падения температуры возобновляется.

Переменным резистором (VR1) можно варьировать скорость вращения вентилятора фена.

Распиновка выводов фена:

Красный, Белый — Нагревательный элемент, 220В.
Зеленый — Корпус, Заземление.
Коричневый — + питания моторчика.
Черный — — питания моторчика.
Сиреневый — + термопары.
Желтый — Общий провод (термопара и геркон).
Синий — Геркон.

Работа с внешней нагрузкой осуществляется 1-й кнопкой «EXT on/off» (кнопки «+», «-» программно не задействованы).

Переменным резистором (VR4) можно варьировать мощность в нагрузке от 0 до 99,9 %.

ВНИМАНИЕ: Схема в «PROTEUS» кардинально отличается от оригинала и предназначена только для отладки и проверки работоспособности системы! Названия и номиналы деталей не совпадают!

Налаживание

Налаживание устройства начинают с проверки монтажа. Подаем питание и на индикаторах горят прочерки, затем мы одновременно нажимаем 4 кнопки «+10», «-10», «+5», «-5» — в результате чего в EEPROM записываются стандартные значения температуры паяльника и фена равные 230 и 300 градусам соответственно и поправочные коэффициенты паяльника и фена равные 300 и 0 единицам соответственно (см. исходник) и мигнут все светодиоды.

После этого включаем паяльник и ждем пока он прогреется. Показания температуры при этом не будут соответствовать действительности. Берем спичечный коробок и в углу паяльником расплавляем небольшое количество олова так, чтобы жало в него погрузилось. Сюда же окунаем термопару мультиметра и сравниваем показания. Вращением подстроечного резистора VR2 добиваемся одинаковых показаний на индикаторе и мультиметре. После этого, изменением «поправочного коэффициента» добиваемся удержания температуры в заданных пределах.

Настройку фена производим по аналогичной методике.

Программа написана на «С» с использованием компилятора CodeVision. Будет интересно услышать отзывы по поводу оптимизации кода или каких-то доработках.

При разработке использовались следующие источники и программы:

Основы пайки феном

Прежде, чем начать проектировать самодельный паяльный фен, следует ознакомиться с основными методами использования данного инструмента.


Чертеж паяльного фена.

Термофен для пайки, как правило, может понадобиться в таких случаях:

  1. Пайка очень маленьких деталей в SMD корпусах. Большинство мелких радиодеталей не поддаются пайке паяльником. Для монтажа подобных компонентов необходимо залудить место посадки, смазать его флюсом и расположить микросхему. После этого можно смело начать нагрев монтажных контактов при помощи фена, до того момента пока припой под компонентом не расплавится, и он не сядет на печатную плату.
  2. Отсутствие свободного места для использования паяльника. При очень плотной компоновке элементов на печатной плате использование паяльника существенно затруднено. В этом случае термофен – это лучший вариант для радиолюбителя.
  3. Ремонтные работы, связанные с мобильными телефонами или планшетными компьютерами. Большинство современный гаджетов практически невозможно разобрать без использования термофена. Например, замена экрана на любом телефоне требует предварительного прогрева старой матрицы при помощи термофена. Серьезный нагрев нейтрализует клей и позволяет отделить экран от корпуса устройства.
  4. Снятие BGA чипов с посадочных площадок. Работы по реболу и прогреву современных видеочипов производятся при помощи паяльного термофена.

Управление температурой и плотностью потока воздуха, как правило, осуществляется при помощи кнопок на термофене.

Процесс пайки при помощи паяльного термофена подразумевает следующие шаги:

  • нанесение припоя или паяльной пасты на место предполагаемого монтажа;
  • установка микросхемы на посадочное место;
  • прогрев монтажных контактов при помощи паяльного термофена.

Для того, чтобы обезопасить близлежащие компоненты от нагрева, следует наложить на них специальные экраны из алюминиевой фольги.

После проведения работ следует проверить качество пропая всех контактов при помощи иголки.

Демонтаж элемента при помощи фена еще проще. Для снятие неисправной микросхемы необходимо:

  • равномерно прогреть все контакты;
  • аккуратно снять элемент при помощи пинцета или присоски.
Читать еще:  Температура плавления припоя. Свойства припоев и подшипниковых материалов

Во время нагрева поверхности при помощи термофена необходимо совершать круговые движения. Такая методика позволяет избежать локального перегрева платы и нарушения ее геометрии.

Собираем воздушный паяльник из обычного

Возникает вопрос: зачем? Ответ в начале статьи: обычным жалом невозможно работать с элементами SMD конструкции. Поэтому жертвуем одним электроприбором, и собираем паяльный фен из паяльника.

Сразу оговорим особенности: конструкция простейшая, собирается без применения сложных узлов, производительность будет не такой выдающейся. Термофен из паяльника нагревает воздух не выше 300 ℃.

Для изготовления нам понадобятся два основных компонента:

  • Собственно, паяльник мощностью 40 Вт с деревянной рукоятью и стандартным нагревательным элементом (который просто удаляется).
  • Любой источник сжатого воздуха. Например, компрессор для аквариума.

Модернизируем паяльник

Нагревательный элемент не трогаем, просто извлекаем жало. Внутри остается свободный проход для воздуха. Провод питания выводим в боковую стенку, а в задний торец рукояти вклеиваем втулку для подачи воздуха. Место ввода электрокабеля герметизируем.

Отверстия в металлическом корпусе паяльника обматываем фольгой, усиливаем теплоемкость медной проволокой. Металлическую трубку плотно загоняем в рукоять. Вместо жала загоняем в отверстие стальную трубку подходящего диаметра.

Принцип работы паяльного фена, сделанного своими руками, следующий

Нагревательный элемент работает в штатном режиме, горячий воздух собирается в камере, «утепленной» с помощью медной проволоки и фольги. Поступающий от компрессора воздух выталкивает воздух через установленную стальную трубку.

Температура паяльника не регулируется, можно лишь менять интенсивность обдува, пережимая подающую трубку. Меньше скорость потока – выше температура на выходе.
Подобрав параметры продувки, можно достичь температуры плавления припоя.

Фен из паяльника, сделанный своими руками, не заменит паяльную станцию, но поможет вам в работе с мелкими радиодеталями.

Мини паяльная станция с большими возможностями

Еще один полноценный термофен собран из баночки от таблеток.

Механическая часть конструкции довольно примитивна: алюминиевая трубка от старого конденсатора со спиралью внутри и воздуховод с вентилятором.

Рукоять не нужна, устройство очень компактное. Изюминка в блоке питания на контроллере, с помощью которого можно устанавливать необходимую температуру.

В итоге получаем фактически промышленный аппарат. После калибровки индикаторов температуры, можно выполнять работы с любым типом радиодеталей, не беспокоясь об их сохранности.

Итог:
Современную паяльную станцию можно собрать практически бесплатно, при этом качество работы не уступает заводским образцам.

Простая паяльная станция: материалы для изготовления жала

Главным преимуществом самодельной паяльной станции является ее более низкая, чем у приобретенной на рынке стоимость. К тому же, изготавливая паяльник и наконечник к нему, вы можете сделать их такими, как нужно именно вам. Ведь только вы знаете, какие приборы вам приходится ремонтировать чаще всего, и какие жала пригодятся чаще.

Для изготовления жала для паяльника вам понадобятся следующие инструменты и материалы:

  • Планшетки и метчики для нарезки резьбы;
  • Мелкий и грубый напильники;
  • Точилка ножевая небольшого диаметра;;
  • Зажимные клещи или настольные тиски;
  • Небольшой молоток;
  • Плоскогубцы в количестве 2х штук;
  • Паяльник без жала;
  • Деревянная киянка;
  • Линейка;
  • Ножовка по металлу с новым полотном;
  • Набор старых отверток;
  • Плотные перчатки;
  • Кусок медной трубки 8 мм в диаметре;
  • Одножильный медный провод диаметром 4 мм.

Первым делом вам нужно убедиться в том, что разровнены все погнутые участки на трубке и устранены любые неровности. Порежьте трубку на заготовки, корректируя длину ножовкой или труборезом. При данных манипуляциях защищайте свои руки специальными перчатками.

Маленькая паяльная станция своими руками v2

Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.

Основные функции:

1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которыми осуществляется переключение кнопкой Solder. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно. Для точного поддержания температуры используется PID регулятор.

Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), PID регулятор, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

  1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
  2. Кнопка отключения отключает сразу все что было включено.
  3. Можно одновременно включать и паяльник и фен.
  4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
  5. Нельзя отключать паяльную станцию от сети 220В пока не остынет фен.
  6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426. Какой в этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
  7. Защиты от КЗ нет, поэтому рекомендую установить предохранители.
  8. Стабилизатор на 5В для питания Arduino используйте любой доступный с учетом напряжения питания вашего БП и нагрева в случае линейного стабилизатор. Так как у меня напряжение 20В установил 7805.
  9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.
Читать еще:  Принцип работы манометров и область применения

Основные узлы и состав:

1. Основная плата:

— Arduino Pro mini,
— сенсорные кнопки,
— дисплей от телефона Nokia 1202.

2. Плата усилителей:

— усилитель терморезистора паяльника,
— полевой транзистор нагрева паяльника,
— усилитель термопары фена,
— полевой транзистор включения вентилятора фена.

3. Плата симисторного модуля

— оптосимистор MOC3063,
— симистор со снабберной цепочкой.

— блок питания от ноутбука 19В 3.5А,
— выключатель,
— стабилизатор для питания Arduino.

А теперь подробнее по узлам.

1. Основная плата


Обратите внимание наименование сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена. В самом начале регулировка оборотов была реализована, но так как напряжение моего БП 20В (увеличил на 1В добавлением переменного резистора), а вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включены в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

Основная плата двухстороннего печатного монтажа. Металлизацию оставлял по максимуму, чтобы уменьшить влияние помех, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности. Без него кнопка будет срабатывать просто при приближении пальца. Но так как у меня сделана сплошная металлизация этот конденсатор не требуется). Сделан вырез под дисплей.

На верхней стороне находятся площадки сенсорных кнопок, наклеена лицевая панель, припаивается дисплей. Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603.

Лицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

Распечатал, вырезал по контуру, а также окно для дисплея.

Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке. За счет выреза в плате дисплей получился вровень с основной платой.

На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.

2. Плата усилителей

Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

  1. Для увеличения «полезного» диапазона выходного сигнала при низкоомном терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезистор сопротивлением 100 кОм при 25 градусах) применен резистивный мост и дифференциальный усилитель. Для уменьшения наводок параллельно терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
  2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок если ардуина например отключится, заземляет затвор полевого транзистора. Резисторы по 220 Ом для ограничения тока заряда затвора.

Схема фена состоит из неинвертирующего усилителя и полевого транзистора.

  1. Усилитель: типовая схема. Для уменьшения наводок параллельно термопаре и в цепи обратной связи стоят конденсаторы.
  2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом — 1206.
Настройка не требуется.

Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не Rail-to-Rail операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3.5-4 В при 5В питания и максимальная температура (при указанных на схеме номиналах) будет ограничена в районе 426 градусов. Рекомендую использовать например MCP6001. Но нужно обратить внимание что в зависимости от букв в конце отличается распиновка:

3. Плата симисторного модуля

Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, а нагрузка — нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительных цепей контроля ноля.

Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано snubberless.

4. Блок питания

Выбор был сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.

5. Корпус

Корпус проектировался под мой БП, с учетом размеров плат и последующей печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов. А гнуть самому красиво не получится.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector