Проверка тиристоров всех видов мультиметром
Проверка тиристоров всех видов мультиметром
Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.
Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.
Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.
Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.
Способы проверки
Существует несколько способов, позволяющих проверить микросхему на работоспособность.
Внешний осмотр
Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.
Проверка работоспособности с помощью мультиметра
Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.
Выявление нарушений в работе выходов
Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.
Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.
Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.
Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.
Жив или мёртв? Проверяем радиодетали
Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр
Транзисторы биполярные
Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов
Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!
Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!
Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!
Транзисторы униполярные (полевые)
У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.
Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.
Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.
Конденсаторы
Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .
Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.
Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.
Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.
Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.
Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.
Резисторы
Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.
Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .
Диоды
Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .
Индуктивность
Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .
КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .
Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!
Оптопары
Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.
Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!
Тиристоры
Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.
Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.
Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!
Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.
Стабилитроны
Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.
Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!
Стабисторы
Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.
Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.
Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!
Шлейф/разъём
Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!
Микросхемы/ИМС
Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.
Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.
Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.
Ну всё, ни пуха Вам, и поменьше горелых деталек!
Пример стабилизации напряжения на LM317
Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.
Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.
Входной конденсатор С1 можно не использовать, если корпус микросхемы расположен не менее 15 сантиметров от входного сглаживающего фильтра. Выходной конденсатор С2 добавляют для сглаживания переходных процессов.
Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.
Принцип работы
Соберем простой стабилизатор напряжения используя LM317 согласно схеме.
Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.
Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.
Регулятор с малым падением напряжения – устройство с низким падением на переходе, примерно от 1 до 1,5 вольт. В качестве регулирующего элемента обычно используется одинарный npn-транзистор.
Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.
Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом. Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.
Драйвер тока
Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.
Используя схему стабилизации как показано в DataSheet можно собрать на LM317 простую схему драйвера тока.
Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.
Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.
Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.
Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень, добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.
Затем подключают в схему со светодиодом. Чтобы выбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.
Онлайн-калькулятор
Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:
- для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
- для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
- для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.
Популярные модели мультиметров
Одним из самых популярных мультиметров, подходящих для дома – UNI-T UT890, он уже несколько лет занимает лидирующее положение на рынке. Любой домашний мастер будет счастлив иметь этот прибор.
- Достоинства: доступная цена, режим памяти, режим «прозвон».
Недалеко ушел от него прибор этой же марки Uni-T UT136, он продается и в магазинах, и в интернет-магазинах. Диапазон измерений может быть и ручной, и автоматический. Единственный его недостаток заключается в том, что качество работы понижается при низкой температуре.
- Достоинства: компактность, многофункциональность.
На почетном месте мультиметр UNI-T UT33D, он довольно прост, но очень компактный и свою работу знает, помещается в карман и мало весит. Имеется защита от перегрузки, безопасен. Чувствительность высокая, а погрешность минимальная. Подойдет как для новичка, так и для специалиста. Из недостатков – ограниченное число функций.
Ну и еще несколько моделей, достойных быть в числе лучших бренда UNI-T UT70A, UT55, UT139C, UT71E
Устройство микросхемы
В составе микросхемы встречаются радиоэлементы, которые проверяются различными способами.
Конденсаторы, резисторы и диоды
Мультиметром можно проверить работоспособность конденсатора микросхемы, подключив прибор к его выходам. В очень короткий период времени значение сопротивления, отображаемое на устройстве, должно увеличиться с нескольких единиц до бесконечности. При изменении положения щупа также следует обратить внимание на это изменение.
Чтобы узнать, работает ли резистор в цепи должным образом, необходимо определить его сопротивление. Значение этого атрибута должно быть больше нуля, но не бесконечно большим. Если показатель на дисплее прибора не равен нулю или бесконечен во время теста, резистор работает нормально.
Испытание резистора
Процесс проверки диодов не очень сложен. Сначала необходимо определить сопротивление между катодом и анодом в одном порядке, затем изменить положение черного и красного проводов устройства. Работоспособность диода будет указываться стремлением к бесконечности числа, отображаемого на экране.
Индукционные катушки, тиристоры и стабилитроны
Чтобы проверить катушку на наличие неисправностей, также может понадобиться мультиметр. Если провод в мотке где-нибудь оборвется, устройство обязательно подаст сигнал. Все, что нужно сделать, чтобы проверить катушку, — это измерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не все доступные сегодня мультиметры могут проверять индуктивность.
Если необходимо определить, исправен ли такой компонент в микросхеме, как тиристор, необходимо выполнить следующие шаги:
- Сначала подключить красный провод к аноду, а черный — к катоду. Сразу после этого на экране устройства отображается информация, указывающая, что сопротивление стремится к бесконечности.
- Подсоединить контрольный электрод к аноду и наблюдать, как сопротивление уменьшается от бесконечности до нескольких единиц.
- После завершения процесса анод и электрод можно отсоединить друг от друга. В результате сопротивление, отображаемое на экране мультиметра, должно оставаться неизменным, равным нескольким Ом.
- Если во время теста все показатели в норме, то тиристор работает нормально и неисправностей нет.
Проверка катушки
Шлейф
- Устанавливается режим измерения на мультиметре.
- Нужно проверить режим прозвона. Для проверки достаточно того, чтобы контакты щупа соприкоснулись. Если все в порядке, мультиметр подаст звуковой сигнал. В случае отсутствия звукового сопровождения нужно поменять прибор или заняться его ремонтом.
- Приклеить конец шлейфа к столу.
- Поместить красный щуп мультиметра на первый конец шлейфа и первый контакт.
- Поставить черный щуп на второй контакт и другой конец шлейфа.
Важно! Кабель состоит из тонких медных проводов, которые легко ломаются, поэтому шлейф не должен сгибаться.
Проверка микросхемы
Сложность проверки во многом зависит не только от метода, но и от устройства и особенностей конструкции микросхем. В конце концов, эти детали электронных вычислительных устройств, хотя и имеют одинаковые принципы построения, часто сильно отличаются друг от друга.
- Самый простой способ проверки — метод, относящийся к серии «КР142». Они имеют только три выхода, поэтому, когда какое-либо напряжение подается на один из входов, на выходе может использоваться контрольное устройство. После этого можно сразу сделать выводы о состоянии элемента.
- Более сложными типами являются «K155», «K176». Чтобы проверить их, необходимо использовать модуль с источником тока с определенным индикатором напряжения, который специально выбран для микросхемы. Характер проверки такой же, как и в первом варианте: просто подается напряжение на вход и проверяется выходной контакт с помощью мультиметра.
- Если необходимо выполнить более сложные тесты, которые не подходят для тестирования с помощью простого мультиметра, придется использовать специальный тестер цепи. Эти устройства могут быть изготовлены отдельно или приобретены в продаже. Тестеры могут помочь определить, работает ли конкретный узел цепи правильно. Как правило, данные, полученные во время теста, отображаются на экране устройства.
Важно! Напряжение, подаваемое на микросхему (микроконтроллер), не должно превышать нормальное значение или, наоборот, быть ниже требуемого уровня. Предварительная проверка может быть проведена на специально подготовленной испытательной доске.
Проверка стабилизатора
Электронные компоненты, такие как стабилитроны, выглядят как диоды, но их использование в радиотехнике несколько иное. Стабилитроны обычно используются для стабилизации питания в цепях малой мощности. Они подключены параллельно с нагрузкой. Когда напряжение слишком высокое, стабилитрон пропустит свой собственный ток, вызывая падение напряжения. Эти компоненты не могут работать при высоких токах, когда начинается нагрев, так как это приводит к тепловому отказу.
Весь процесс похож на то, как проверяют диод. Это можно сделать в режиме тестирования резистора или диода с использованием обычного мультиметра. Как и диод, работающий стабилитрон может проводить ток в одном направлении.
Как проверить микросхему мультиметром
Первое и самое важное правило: можно проверять только полностью отключенную цепь, ни при каких обстоятельствах нельзя подключаться к проводам под напряжением.
Микросхема с помощью мультиметра проверяется по следующему алгоритму:
1. Устанавливается щуп в разъемы мультиметра:
— Красный штекер щупа в гнездо VΩmA
— Черный щуп в разъеме COM
2. Устройство включается поворотом регулятора, выбирается нужный режим, отмеченный нужным условным знаком. После этого на экране устройства должны отображаться цифры.
3. Проверяется правильность работы мультиметра. Это делается путем соприкосновением контактов датчика . Если прибор работает нормально, то будет слышен звуковой сигнал, а на экране появится значение, близкое к нулю.
Общие сведения о симисторе
Симистор или триак является одним из подвидов тиристоров, которые состоят из большего количества переходов и используются в схемах устройств с электронным регулированием.
Ток тиристора проходит только в одном направлении, когда как симистор способен пропускать его сразу в 2-х благодаря наличию 5-того слоя. На рисунке изображена его структурная схема, по которой можно понять, как работает симистор. Из пяти переходов образуется две структуры: р1-n2-p2-n3 и р2-n2-p1-n1 (2 тиристора включенных встречно-параллельно, показанных на рисунке 2). Пятая область представляет собой управляющий электрод (УЭ), который осуществляет управление слоями.
Рисунок 1 — Структурная схема симистора
Если происходит обратное направление, то структуры меняются местами.
Рисунок 2 — Тиристорный аналог триака
При подаче на УЭ сигнала, который называется отпирающим, и при положительно-заряженном аноде, отрицательным — на катоде, ток течет через тиристор, расположенный слева на рисунке 2. При смене полярностей ток будет течь через правый. Как у любого полупроводникового прибора, у симистора есть вольт амперная характеристика (рисунок 3).
Рисунок 3 — Вольт амперная характеристика триака
ВАХ состоит из двух кривых, повернутых на 180 градусов. Их форма практически аналогична ВАХ динистора. Благодаря симметричности ВАХ прибор получил название симистор. Расшифровка обозначений ВАХ:
- А и В — закрытое и открытое состояния прибора.
- Udrm (Uпр) и Urrm (Uоб) — максимальные допустимые напряжения при прямом и обратном включениях.
- Idrm (Iпр) и Irrm (Iоб) — прямой и обратный токи.
Симистор позволяет управлять цепями переменного и постоянного токов. Однако тиристорный аналог симистора не может заменить прибор из-за ограничения: для управления напряжением переменной составляющей (переменного напряжения) нужно 2 тиристора, а также отдельный источник для каждого прибора, и тиристоры будут работать только наполовину мощности.
Примеры применения симметричных тиристоров:
Для регулировки освещения (диммеры).
- Строительный инструмент с плавным пуском.
- Нагреватели с электронной регулировкой температуры (например, индукционная плита).
- Компрессоры для кондиционеров.
- Бытовая техника с плавной регулировкой.
- В промышленности (например: управление освещением, плавный пуск двигателей).
- При усовершенствовании приборов своими руками (например, чайника).
Основные виды
Так как симистор является разновидностью тиристора, то, следовательно, для него применимы те же различия. Основная классификация симисторов:
Конструктивное исполнение, включающее не только устройство и корпус (цоколевка), но и распиновку (можно понять тип симистора).
- Ток, при котором возникает перегрузка прибора.
- Основные параметры УЭ: напряжение и ток открытия перехода.
- Прямое и обратное напряжения.
- Прямой и обратный токи пропускания через триак.
- Тип нагрузки: низкой, средней и высокой мощностей.
- Ток затвора прибора.
- Коэффициент dv/dt, показывающий скорость переключения.
- Импортные не требуют особой настройки и работают при интеграции в схему; отечественные, требующие настройки путем интеграции в схему и дополнительное подключение радиоэлементов в цепь симистора.
- Изоляция корпуса.
Как и у любого радиоэлемента, у симистора есть достоинства и недостатки. К достоинствам элемента можно отнести их низкую стоимость, надежность, долговечность, отсутствие помех.
Основные недостатки триаков: сильно греются, влияние шумов и невозможность применения на высоких частотах.
С этими недостатками можно бороться различными способами. Для избегания перегрева детали необходимо использовать радиаторы для отвода тепла, кроме того, необходимо смазать точки прикосновения триака и радиатора специальной теплопроводящей пастой (используется при сборке персональных компьютеров). Для сведения влияния различного рода помех к минимуму применяется шунтирование прибора специальной RC-цепью (R = 50..470 Ом, а С = 0,01..0,1 мкФ). Эти величины подбираются в зависимости от характеристик прибора.
Характеристики триаков
Для использования конкретного прибора в схемах необходимо знать его основные характеристики. В большинстве случаев при сгорании триака в схеме необходимо заменить таким же или его аналогом. Основные характеристики, на которые необходимо обратить внимание:
- Максимальное обратное и импульсное напряжения.
- Максимальный ток в открытом состоянии при нормальном и импульсном режимах.
- Минимальный ток открытия перехода, при подаче на УЭ.
- Минимальный импульсный ток при минимальном напряжении.
- Время, при котором происходит включение и отключение триака.
При использовании триака нужно учитывать длину провода, которая идет к УЭ — она должна быть минимальной.
Краткий обзор популярных моделей
Среди импортных симисторов различают мощные высоковольтные серии bta (ВТА). Отлично себя зарекомендовали модели: bta06, bta16 ( вта16 ), bta416y600c, bta08, вта41600в. Значение тока колеблется в пределах от 4 до 40 А, напряжение находиться в диапазоне от 200 до 800 вольт.
Среди недорогих и надежных моделей нужно выделить: btb12 600bw (на 600 вольт или на 700 в модели 700bw), btb16 600с или btb16600e (800cw на 800 вольт и 600е на 600 вольт). Триаки bt137, вт134, вт137 и вт131 фирмы Semiconductors зарекомендовали себя в качестве лучших моделей с отличной изоляцией корпуса. Среди симметричных тринисторов низкой мощности можно выделить модели: z7m, m2lz47 (фирмы Toshiba), zo607, z0607. Все они могут отличаться током и обратным напряжением.
Среди достойных импортных аналогов можно выделить симисторы с изолируемым корпусом фирмы ON Semiconductor. Диапазон максимальных токов от 0,6 А до 16 А. Благодаря управлению от низковольтных логических выходов они применяются в более сложных устройствах с микроконтроллерами.
Отечественный аналог ку202г, способный выдержать напряжение до 50 вольт и импульсный ток до 30 А, может широко применяться для различных устройств с плавным пуском. Однако модели серии 202 поддерживают напряжение до 400 вольт и являются очень надежными. Они способны составить высокую конкуренцию импортным моделям.
Тестирование на пробой
Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:
- Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм.
Рис 3. Измеряем сопротивление между УЭ и К
- Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
- Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода Анод-Катод
Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.
Способы проверки
Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.
Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:
Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
- Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
- Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.
Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.
Влияние разновидности микросхем
Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.
Например:
Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
- Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
- Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.
Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.
Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.
Работоспособность транзисторов
Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:
Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
- Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
- Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.
Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.
Конденсаторы, резисторы и диоды
Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.
Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.
Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.
Индуктивность, тиристор и стабилитрон
Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.
Все, что необходимо сделать для проверки катушки — замерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не каждый из имеющихся сегодня в продаже мультиметров может проверять индуктивность. Если нужно определить, является ли исправным такой элемент микросхемы, как тиристор, то следует выполнить следующие действия:
Сначала соединить красный щуп с анодом, а черный, соответственно, с катодом. Сразу после этого на экране прибора появится информация о том, что сопротивление стремится к бесконечности.
- Выполнить соединение управляющего электрода с анодом и смотреть за тем, как значение сопротивления будет падать от бесконечности до нескольких единиц.
- Как только процесс падения завершится, можно отсоединять друг от друга анод и электрод. В результате этого отображаемое на экране мультиметра сопротивление должно остаться прежним, то есть равным нескольким Ом.
Если при проверке все будет именно так, значит, тиристор работает правильно, никаких неисправностей у него нет.
Чтобы проверить стабилитрон, нужно его анод соединить с резистором, а затем включить ток и постепенно поднимать его. На экране прибора должен отображаться постепенный рост напряжения. Через некоторое время этот показатель останавливается в какой-то точке и прекращает увеличиваться, даже если проверяющий по-прежнему увеличивает его посредством блока питания. Если рост напряжения прекратился, значит, проверяемый элемент микросхемы работает правильно.
Проверка микросхемы на исправность — это процесс, который требует серьезного подхода. Иногда можно обойтись без специального прибора и попробовать обнаружить дефекты визуально, используя для этого, например, увеличительное стекло.