Termokings.ru

Домашний Мастер
81 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды и принципы действия полевых транзисторов для чайников

Виды и принципы действия полевых транзисторов для чайников

В электронике и радиотехнике очень часто применяются полупроводниковые приборы, к которым относятся и транзисторы. Полевые транзисторы (ПТ) потребляют значительно меньше электрической энергии, благодаря чему они применяются в различных маломощных устройствах. Кроме того, существуют модели, работающие на больших токах при малом потреблении питающего напряжения (U).

  • Общие сведения
    • Классификация и устройство
    • Принцип работы JFET
    • Особености работы MOFSET
  • Преимущества и недостатки
  • Схемы подключения

MOSFET транзисторы

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов — IRFZ44N.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом ( +) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Читать еще:  Микрометр: что это такое и как им правильно пользоваться

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Устройство полевого транзистора JFET с N-каналом

Как показано на рисунке ниже, область полупроводника N-типа формирует канал между зонами P-типа. Электроды, подключаемые к концам N-канала, называются сток и исток. Полупроводники P-типа электрически соединяются между собой (закорачиваются), и представляют собой один электрод – затвор.

Вблизи стока и истока находятся области повышенного легирования N+. T. e. зоны с повышенной концентрацией электронов. Это улучшает проводимость канала. Кроме этого, наличие областей N+ ослабляет эффект появления паразитических PN-переходов в случае присоединения проводников из трехвалентного алюминия.

Имена электродов сток и исток носят условный характер. Если взять отдельный полевой транзистор, не подключенный к какой-либо схеме, то не будет иметь значения какая ножка корпуса сток, а какая исток. Имя электрода будет зависеть от его расположения в электрической цепи.

Принцип работы полевого транзистора

Говоря простыми словами о том, как работает полевой транзистор для чайников с управляющими p-n переходами, стоит отметить: радиодетали состоят из двух участков: p-переходов и n-переходов. По участку n проходит электроток. Участок р является перекрывающей зоной, неким вентилем. Если оказывать определенное давление на нее, то она будет перекрывать участок и препятствовать прохождению тока. Либо, же наоборот, при снижении давления количество проходящего тока возрастет. В результате такого давления осуществляется увеличение напряжения на контактах затворов, находящихся на участке р.

Приборы с управляющими p-n канальными переходами — это полупроводниковые пластины, имеющие электропроводность с одним из данных типов. К торцевым сторонам пластин выполняется подсоединение контактов: стока и истока, в середину — контакты затвора. Принцип работы прибора основан на изменении пространственных толщин p-n переходов. Так как в запирающих областях практически отсутствуют подвижные носители заряда, их проводимость равняется нулю. В полупроводниковых пластинах, на участках которых не воздействует запирающий слой, создаются проводящие ток каналы. Если подается отрицательное напряжение в отношении истока, на затворе образуется поток, через который протекают носителя заряда.

Для изолированных затворов, характерно расположение на них тонкого слоя диэлектрика. Такое устройство работает по принципу электрических полей. Для его разрушения понадобится всего лишь небольшое электричество. В связи с этим, чтобы предотвратить статическое напряжение, которое может превышать 1000 В, необходимо создание специальных корпусов для приборов, которые минимизируют эффект от воздействия вирусных типов электричества.

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.

n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

Читать еще:  Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Полевым транзистором (ПТ) называется полупроводниковый радиокомпонент, используемый для усиления электрического сигнала. В цифровых устройствах схемы на основе ПТ исполняют функции ключей, управляющих переключениями логических элементов. В последнем случае использование полевых транзисторов оказывается крайне выгодным с точки зрения миниатюризации аппаратуры. Это обусловлено тем, что для цепей управления этими радиокомпонентами требуются небольшие мощности, вследствие чего на одном кристалле полупроводниковой микросхемы можно размещать десятки тысяч транзисторов.

Полупроводниковым сырьём для изготовления полевых транзисторов являются следующие материалы:

  1. карбид кремния;
  2. арсенид галлия;
  3. нитрид галлия;
  4. фосфид индия.

Устройство и принцип работы полевого транзистора.

ПТ состоит из трёх элементов – истока, стока и затвора. Функции первых двух очевидны и состоят соответственно в генерировании и приёме носителей электрического заряда, то есть электронов или дырок. Предназначение затвора заключается в управлении током, протекающим через полевой транзистор. Таким образом, мы получаем классический триод с катодом, анодом и управляющим электродом.

В момент подачи напряжения на затвор возникает электрическое поле, изменяющее ширину p-n-переходов и влияющее на величину тока, который протекает от истока к стоку. При отсутствии управляющего напряжения ничто не препятствует потоку носителей заряда. С повышением управляющего напряжения канал, по которому движутся электроны или дырки, сужается, а при достижении некоего предельного значения закрывается вовсе, и ПТ входит в так называемый режим отсечки. Как раз это свойство полевых транзисторов и позволяет использовать их в качестве ключей.

Усилительные свойства радиокомпонента обусловлены тем, что мощный электрический ток, протекающий от истока к стоку, повторяет динамику напряжения, прикладываемого к затвору. Другими словами, с выхода усилителя снимается такой же по форме сигнал, что и на управляющем электроде, только гораздо более мощный.

Распространённые типы полевых транзисторов.

В настоящее время в радиоаппаратуре применяются ПТ двух основных типов – с управляющим p-n-переходом и с изолированным затвором. Опишем подробнее каждую модификацию.

1. Управляющий p-n-переход.

Эти полевые транзисторы представляют собой удлинённый полупроводниковый кристалл, противоположные концы которого с металлическими выводами играют роль стока и истока. Функцию затвора исполняет небольшая область с обратной проводимостью, внедрённая в центральную часть кристалла. Так же, как сток и исток, затвор комплектуется металлическим выводом.

Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок (в зависимости от типа проводимости основного кристалла).

2. Изолированный затвор.

Конструкция этих полевых транзисторов отличается от описанных выше ПТ с управляющим p-n-переходом. Здесь полупроводниковый кристалл играет роль подложки, в которую на некотором удалении друг от друга внедрены две области с обратной проводимостью. Это исток и сток соответственно. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.

Из-за того, что в конструкции этих полевых транзисторов используются три типа материалов – металл, диэлектрик и полупроводник, – данные радиокомпоненты часто именуют МДП-транзисторами. В элементах, которые формируются в кремниевых микросхемах планарно-эпитаксиальными методами, в качестве диэлектрического слоя используется оксид кремния, в связи с чем буква «Д» в аббревиатуре заменяется на «О», и такие компоненты получают название МОП-транзисторов.

Существует два вида этих полевых транзисторов – с индуцированным и встроенным каналом. В первых физический канал отсутствует и возникает только в результате воздействия электрического поля от затвора на подложку. Во вторых канал между истоком и стоком физически внедрён в подложку, и напряжение на затворе требуется не для формирования канала, а лишь для управления его характеристиками.

Схемотехническое преимущество ПТ с изолированным затвором перед транзисторами с управляющим p-n-переходом заключается в более высоком входном сопротивлении. Это расширяет возможности применения данных элементов. К примеру, они используются в высокоточных устройствах и прочей аппаратуре, критичной к электрическим режимам.

В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям. Это вынуждает соблюдать особые меры предосторожности при работе с этими радиодеталями. В частности, в процессе пайки необходимо использовать паяльную станцию с заземлением, а, кроме того, заземляться должен и человек, выполняющий пайку. Даже маломощное статическое электричество способно повредить полевой транзистор.

Схемы включения полевых транзисторов.

В зависимости от того, каким образом ПТ включается в усилительный каскад, существует три схемы – с общим истоком, с общим стоком и с общим затвором. Способы различаются тем, на какие электроды подаются питающие напряжения, и к каким цепям присоединяются источник сигнала и нагрузка.

Схема с общим истоком используется чаще всего, так как именно в этом случае достигается максимальное усиление входного сигнала. Способ включения ПТ с общим стоком используется, главным образом, в устройствах согласования, поскольку усиление здесь небольшое, но входной и выходной сигналы совпадают по фазе. И, наконец, схема с общим затвором находит применение, в основном, в высокочастотных усилителях. Полоса пропускания при таком включении полевого транзистора гораздо шире, чем при других схемах.

Читать еще:  Как проверить емкость аккумуляторной батареи мультиметром и не только

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Основные параметры полевых транзисторов

Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп.

Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.

Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока.

Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты. Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10. 20 раз меньше предельной частоты транзистора.

Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.

Для нормальной работы полевого транзистора на его электродах должно действовать постоянное напряжение начального смещения. Полярность напряжения смещения определяется типом канала (n или р), а значение этого напряжения — конкретным типом транзистора.

Здесь следует указать, что среди полевых транзисторов значительно больше разнообразие конструкций кристалла, чем среди биполярных. Наибольшее распространение в любительских конструкциях и в изделиях промышленного производства получили полевые транзисторы с так называемым встроенным каналом и р-n переходом.

Они неприхотливы в эксплуатации, работают в широких частотных пределах, обладают высоким входным сопротивлением, достигающим на низкой частоте нескольких мегаом, а на средней и высокой частотах — нескольких десятков или сотен килоом в зависимости от серии.

Для сравнения укажем, что биполярные транзисторы имеют значительно меньшее входное сопротивление, обычно близкое к 1. 2 кОм, и лишь ступени на составном транзисторе могут иметь большее входное сопротивление. В этом со-состоит большое преимущество полевых транзисторов перед биполярными.

Рис. 2. Напряжения питания для полевых транзисторов.

На рис. 2 показаны условные обозначения полевых транзисторов со встроенным каналом и р-n переходом, а также указаны и типовые значения напряжения смещения. Выводы обозначены в соответствии с первыми буквами названий электродов.

Характерно, что для транзисторов с р-каналом напряжение на стоке относительно истока должно быть отрицательным, а на затворе относительно истока — положительным, а для транзистора с n-каналом — наоборот.

В промышленной аппаратуре и реже в радиолюбительской находят также применение полевые транзисторы с изолированным затвором. Такие транзисторы имеют еще более высокое входное сопротивление, могут работать на очень высоких частотах. Но у них есть существенный недостаток — низкая электрическая прочность изолированного затвора.

Для его пробоя и выхода транзистора из строя вполне достаточно даже слабого заряда статического электричества, который всегда есть на теле человека, на одежде, на инструменте.

По этой причине выводы полевых транзисторов с изолированным затвором при хранении следует связывать вместе мягкой голой проволокой, при монтаже транзисторов руки и инструменты нужно «заземлять», используют и другие защитные мероприятия.

Литература: Васильев В.А. Приемники начинающего радиолюбителя (МРБ 1072).

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×