Termokings.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оборудование и средства измерений скорости и объемного расхода газов

Оборудование и средства измерений скорости и объемного расхода газов

Пневмометрическая (напорная) трубка НИИОГАЗ

Трубка НИИОГАЗ предназначена для определения скорости и расхода газопылевых потоков методом измерения динамического давления газа (ГОСТ 17.2.04.06-90. «Охрана природы. Атмосфера. Методы определения скорости и расхода газопылевых потоков, отходящих от стационарных источников загрязнения»). Применяется в комплекте с дифференциальным манометром или микроманометром.

Технические характеристики:

  • Наружный диаметр головной части трубки – 6….10 мм
  • Длина наконечника трубки – 40…70 мм
  • Средний коэффициент преобразования динамического (скоростного) давления трубки во всем диапазоне скоростей, Кт 0.5 . 0.7
  • Относительная погрешность определения коэффициента трубки, не более 5%.
  • Cкорость пылегазового потока, преобразуемая напорной трубкой, от 2 до 30 м/c.
  • Температура контролируемой среды от -40 до +4000С.
  • Трубки изготавливаются длиной 0,5; 1; 1,5 и 2 метра. Более 2 метров (по спецзаказу).

Комплект поставки:
— пневмометрическая трубка НИИОГАЗ,
— резиновая трубка внутренним диаметром 6,0 мм -3 м,
— чехол.

Пневмометрическая (напорная) трубка Пито

Трубка Пито применяется при определении скорости и объемного расхода в газоходах и вентсистемах в комплекте с дифференциальным манометром или микроманометром. Выпускаются две модификации: Пито (с изогнутым носиком) и Пито цилиндрическая (с прямым носиком).

Технические характеристики:

  • Наружный диаметр трубки – 8…10 мм.
  • Длина наконечника трубки – 80…100 мм

Средний коэффициент преобразования динамического (скоростного) давления трубки во всем диапазоне скоростей, Кт
— Пито (с изогнутым носиком) — 0,95 . 1,05
— Пито (с прямым носиком) — 0,35 . 0,55

Относительная погрешность определения коэффициента трубки, %
— Пито (с изогнутым носиком) не более 3%.
— Пито (с прямым носиком) не более 5%.

Cкорость пылегазового потока, преобразуемая напорной трубкой:
— Пито — от 2 до 30 м/c
— Пито цилиндрическая – от 4 до 30 м/с.
Температура контролируемой среды от -40 до +4000С.
Трубки изготавливаются длиной 0,5; 1; 1,5 и 2 метра. Более 2 метров (по спецзаказу).

Комплект поставки:
-пневмометрическая трубка Пито,
-резиновая трубка внутренним диаметром 5,0 мм -3 м,
-чехол.

Манометр дифференциальный цифровой ДМЦ-01М

ДМЦ-01М предназначен для измерения давления, разрежения и разности давлений газов, а также для определения скорости и расхода газопылевых и воздушных потоков с помощью напорных трубок НИИОГАЗ или ПИТО (по ГОСТ 17.2.4.06-90 и ГОСТ 8.361-79). Применяется при технологическом и экологическом контроле выбросов различных производств, контроле вентиляции производственных помещений. Встроенный микропроцессор обеспечивает автоматическую установку нуля, измерение и накопление данных по сечению газохода, расчет локальных скоростей и расхода газа, расчет средних скорости и расхода газа по измеренным точкам. № 15594-06 в Государственном реестре средств измерений РФ. Сертифицирован также в Республике Беларусь, в Украине и Республике Казахстан.

Технические характеристики:

  • Диапазон измерения перепада давления: -200. + 200 мм вод. ст.
  • Предел основной допускаемой абсолютной погрешности, не более ±(1+0,005PД) Па или ±(0,1+0,005PД) мм вод.ст.
  • Температура окружающей среды: 0. + 40°C

Термоанемометр ТТМ-2

Термоанемометр ТТМ-2 предназначен для измерения скорости воздушного потока вентсистем, скорости ветра, скорости воздушного потока в вытяжных шкафах и т.п. Прибор состоит из измерительного блока и измерительного зонда. Прибор производит запись измеренных значений.

Технические характеристики:

  • Диапазон измерения скорости воздушного потока — 0,1…30 м/с
  • Погрешность измерения скорости ±(0,05+5%V)
  • Температура окружающего воздуха для измерительного блока -15…+50 °C
  • Температура окружающего воздуха для измерительного зонда -40…+50 °C

Микроманометр ММН-2400

Микроманометр многодиапазонный с наклонной трубкой является жидкостным прибором и предназначен для измерения давления и разности давлений. Для определения скорости газовых потоков на источниках выбросов используется совместно с пневмометрической (напорной) трубкой.

Технические характеристики:

  • Диапазон измерения 0…2400 Па (240 мм вод.ст.). Класс точности – 1,0
  • Температура рабочей жидкости от 10 до 40 °C
Читать еще:  Канифоль — полезное органическое вещество

Приборы, методы и способы измерения давления

РубрикаПроизводство и технологии
Видреферат
Языкрусский
Дата добавления13.05.2013
Размер файла211,3 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО образования и науки российской федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Восточно-Сибирский Государственный Университет Технологии и Управления»

Реферат на тему:

Приборы, методы и способы измерения давления

давление прибор манометр барометр

Давление характеризует состояние сплошной среды и является диагональной компонентой тензора напряжений. В простейшем случае изотропной равновесной неподвижной среды давление не зависит от ориентации. Давление можно считать также мерой запасённой в сплошной среде потенциальной энергии на единицу объёма и измерять в единицах энергии, отнесённых к единице объёма.

Измерение давления необходимо практически в любой области науки и техники как при изучении происходящих в природе физических процессов, так и для нормального функционирования технических устройств и технологических процессов, созданных человеком. Давление определяет состояние веществ в природе (твердое тело, жидкость, газ). Чрезвычайно многообразно применение давления в науке, технике и производстве. Давление характеризует напряженное состояние жидкостей и газов в условиях всестороннего сжатия и определяется частным от деления нормальной к поверхности силы на площадь этой поверхности

Для измерения давления используют манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры, датчики давления, дифманометры.

1. Классификация приборов для измерения давления по типу чувствительного элемента

По виду упругого чувствительного элемента пружинные приборы делятся на следующие группы:

1) приборы с трубчатой пружиной, или собственно пружинные;

2) мембранные приборы, у которых упругим элементом служит мембрана, анероидная или мембранная коробка, блок анероидных или мембранных коробок;

3) пружинно-мембранные с гибкой мембраной;

4) приборы с упругой гармониковой мембраной (сильфоном);

2. Определение понятия «давление», точное измерение давления и соотношение между ними

Давление является одним из важнейших параметров химико-технологических процессов. От величины давления часто зависит правильность протекания процесса химического производства. Под давлением в общем случае понимают предел отношения нормальной составляющей силы к площади, на которую действует сила. При равномерном распределении сил давление равно частному от деления нормальной составляющей силы давления на площадь, на которую эта сила действует. Величина единицы давления зависит от выбранной системы единиц.

Различают абсолютное и избыточное давление. Абсолютное давление Pа — параметр состояния вещества (жидкостей, газов и паров). Избыточное давление рипредставляет собой разность между абсолютным давлением Pа и барометрическим давлением Рб (т. е. давлением окружающей среды):

Если абсолютное давление ниже барометрического, то

где Pв — разрежение.

Единицы измерения давления: Па (Н/м2); кгс/см 2 ; мм вод. ст.; мм рт.ст.

3. Классификация приборов для измерения давления и разрежения

Приборы для измерения давления подразделяются на:

а) манометры — для измерения абсолютного и избыточного давления;

б) вакуумметры — для измерения разряжения (вакуума);

в) мановакуумметры — для измерения избыточного давления и вакуума;

г) напоромеры — для измерения малых избыточных давлений (верхний предел измерения не более 0,04 МПа);

д) тягомеры — для измерения малых разряжений (верхний предел измерения до 0,004 МПа);

е) тягонапорометры — для измерения разряжений и малых избыточных давлений;

ж) дифференциальные манометры — для измерения разности давлений;

з) барометры — для измерения барометрического давления атмосферного воздуха.

Рис. 3. Напоромер

4. Методы измерения давления

Методы измерения давления во многом предопределяют как принципы действия, так и конструктивные особенности средств измерений. В этой связи в первую очередь следует остановиться на наиболее общих методологических вопросах техники измерения давления. Давление, исходя из самых общих позиций, может быть определено как путем его непосредственного измерения, так и посредством измерения другой физической величины, функционально связанной с измеряемым давлением.

Читать еще:  Способы защиты металла от коррозии и появления ржавчины

В первом случае измеряемое давление воздействует непосредственно на чувствительный элемент прибора, который передает информацию о значении давления последующим звеньям измерительной цепи, преобразующим ее в требуемую форму. Этот метод определения давления является методом прямых измерений и получил наибольшее распространение в технике измерения давления. На нем основаны принципы действия большинства манометров и измерительных преобразователей давления.

Во втором случае непосредственно измеряются другие физические величины или параметры, характеризующие физические свойства измеряемой среды, значения которых закономерно связаны с давлением (температура кипения жидкости, скорость распространения ультразвука, теплопроводность газа и т.д.). Этот метод является методом косвенных измерений давления и применяется, как правило, в тех случаях, когда прямой метод по тем или иным причинам неприменим, например, при измерении сверхнизкого давления (вакуумная техника) или при измерении высоких и сверхвысоких давлений.

Методологически не менее важен и вопрос о способе, которым средство измерений воспроизводит единицу давления, что непосредственно сказывается на его функциональных возможностях.

Относительный метод измерений, в отличие от абсолютного, основан на предварительном исследовании зависимости от давления физических свойств и параметров чувствительных элементов средств измерения давления при методах прямых, измерений или других физических величин и свойств измеряемой среды — при методах косвенных измерений. На пример, деформационные манометры перед их применением для измерения давления должны быть сначала отградуированы по образцовым средствам измерений соответствующей точности.

Помимо классификации по основным методам измерений давлений и видам давления, средства измерений давления классифицируют по:

· диапазону и точности измерений.

5. Класс точности приборов

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основных и дополнительных погрешностей, а также другими свойствами средств измерения, влияющими на точность, значение которых устанавливается в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств. Например, класс точности вольтметра характеризует пределы допускаемой основной погрешности и допускаемых изменений показаний, вызываемых внешним магнитным полем и отклонением от нормальных значений температуры, частоты переменного тока и некоторых других влияющих факторов.

В настоящее время в нашей стране используются два вида классов точности:

1) по абсолютным погрешностям (порядковые номера классов);

2) по относительным погрешностям. В последнем случае класс точности — это отношение абсолютной погрешности Д к диапазону шкалы прибора, выраженное в процентах.

Государственными стандартами для разных приборов установлены различные классы точности. Класс точности обозначается на циферблате прибора либо в паспорте прибора.

Согласно ГОСТ 8.401-80 (взамен ГОСТ 13600-68) классы точности выбираются из ряда:

Средства измерений с двумя и более шкалами могут иметь соответственно два и более классов точности.

Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и т. д. В системе СИ за единицу давления принят паскаль (Па).

В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический. При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь.

Измерение давления является одним из самых главных видов измерений в любых отраслях промышленности. Надежность измерения этого параметра гарантирует безопасность и целостность установки, а также требуется во многих процессах учета расхода жидкостей, измерения абсолютного и дифференциального давления в коррозионных и абразивных средах.

Читать еще:  Как пользоваться строительным лазерным уровнем

1. Иванова Г.М., Теплотехнические измерения и приборы: учебник для вузов, Изд. МЭИ, 2005. — 460с.

2. Преображенский В.П. Теплотехнические измерения и приборы, 1978 г.

3. Алиев Т.М., Тер-Хачатуров А. А. Измерительная техника: Учеб. пособие для техн. Вузов. — М.: Высш. шк., 1991

4. Хансуваров К.И., Цейтлин В.Г. Техника измерения давления, расхода, количества и уровня жидкости, газа и пара: Учебное пособие для техникумов — М.: Издательство стандартов, 1990

5. Технические измерения и приборы. Ч. 1. Измерение теплоэнергетических параметров: Учеб. Пособие. — Ангарск: АГТА, 2000

6. Поздняк В. Статья «Вопросы проектирования, выбора и эксплуатации датчиков давления для технологических процессов». — Челябинск: Журнал «Электронные компоненты», №9, 2004

7. Фарзане Н.Г., Илясов П.В., Азимзаде А.Ю. Технологические измерения и приборы. Учебник. Москва. Высшая школа.1989.

Размещено на Allbest.ru

Подобные документы

Общие сведения о измерениях и контроле. Физические основы измерения давления. Классификация приборов измерения и контроля давления. Характеристика поплавковых, гидростатических, пьезометрических, радиоизотопных, электрических, ультразвуковых уровнемеров.

контрольная работа [32,0 K], добавлен 19.11.2010

Преобразователи температуры с унифицированным выходным сигналом. Устройство приборов для измерения расхода по перепаду давления в сужающем устройстве. Государственные промышленные приборы и средств автоматизации. Механизм действия специальных приборов.

курсовая работа [1,5 M], добавлен 07.02.2015

Соотношение между единицами измерения давления. Приборы для измерения давления. Жидкостные приборы с видимым уровнем. Схема микроманометра. Сведения и основные свойства упругих чувствительных элементов. Плоская мембрана и ее статическая характеристика.

курсовая работа [1,0 M], добавлен 22.08.2013

Исследование видов и единиц измерения давления жидкой или газообразной среды. Изучение классификации манометров. Описания жидкостных приборов. Обзор действия пьезоэлектрических манометров. Установка и использование измерительных преобразователей давления.

презентация [1,5 M], добавлен 22.07.2015

Общее описание приборов. Измерение давления. Классификация приборов давления. Особенности эксплуатации Индивидуальное задание. Преобразователь давления Сапфир-22-Еx-М-ДД. Назначение. Устройство и принцип работы преобразователя. Настройка прибора.

практическая работа [25,4 K], добавлен 05.10.2008

Назначение нефтеперекачивающей станции. Система механического регулирования давления. Функциональная схема автоматизации процесса перекачки нефти. Современное состояние проблемы измерения давления. Подключение по электрической принципиальной схеме.

курсовая работа [2,8 M], добавлен 15.06.2014

Характеристика методов измерения и назначение измерительных приборов. Устройство и применение измерительной линейки, микроскопических и штанген-инструментов. Характеристика средств измерения с механическим, оптическим и пневматическим преобразованием.

курсовая работа [312,9 K], добавлен 01.07.2011

Понятия и определения метрологии. Причины возникновения погрешностей и методы уменьшения. Средства измерения давления, температуры, веса, расхода и количества вещества. Расходомеры и счетчики. Динамическая характеристика измерительного устройства.

шпаргалка [2,4 M], добавлен 25.03.2012

Применение дифференциального манометра для измерения перепадов давления. Классификация приборов по устройству на жидкостные и механические. Ремонт и техническое обслуживание дифференциального манометра, требования безопасности при обращении с ртутью.

реферат [773,3 K], добавлен 18.02.2013

Система государственных эталонов физических величин. Система передачи размеров единиц физических величин. Классификация средств измерения. Сущность давления, приборы и средства для его измерения. Схематическое изображение различных видов манометров.

лекция [525,2 K], добавлен 21.04.2011

Читайте также

Погрешность измерения давления зависит от инструментальных погрешностей измерительных приборов, условий эксплуатации манометров, способов отбора давления и его передачи к приборам. При выборе пределов измерения манометра руководствуются значениями измеряемого. [читать подробенее]

Погрешность измерения давления зависит от инструментальных погрешностей измерительных приборов, условий эксплуатации манометров, способов отбора давления и его передачи к приборам. При выборе пределов измерения манометра руководствуются значениями измеряемого. [читать подробенее]

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×