Termokings.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Детали машин

Детали машин

Конструкции зубчатых колес

В зависимости от назначения, размеров и технологии получения заготовки зубчатые колеса могут иметь различную конструкцию.

Цилиндрические и конические шестерни выполняют заодно целое с валом (вал-шестерня). Это связано с малыми размерами шестерен и с тем, что раздельное изготовление снижает точность и увеличивает стоимость производства вследствие увеличения числа посадочных поверхностей, требующих точной обработки, а также вследствие необходимости применения соединений (шлицевых, шпоночных), снижающих точность передачи и прочностные свойства элементов механизма.

Насадные шестерни применяют при больших диаметрах и в тех случаях, когда они должны перемещаться вдоль вала по условиям работы или сборки.
При диаметре dа150 мм колеса изготавливают в форме сплошных дисков из проката или из поковок (рис. 1).
Зубчатые колеса диаметром менее 500 мм получают ковкой (рис. 2), отливкой (рис. 3,а) или сваркой (рис. 3,б).
Колеса диаметром боле 500 мм выполняют отливкой или сваркой.

Иногда зубчатые колеса выполняют в виде узлов, образуемых сборкой отдельных частей (рис. 4). Так, венцы колес могут быть напрессованы на ступицу (бандажированные колеса) (рис. 4,а), крепиться резьбовым соединением (свертные колеса) (рис. 4,б) или приклепываться (клепаные колеса) (рис. 4,в).
Бандажированные, свертные или клепаные колеса применяют в целях экономии легированных сталей или цветных металлов, если таковые используются при изготовлении колеса.

Изготовление зубчатых колес

Заготовки зубчатых колес получают ковкой в штампах или свободной ковкой, реже литьем в зависимости от размеров, материала, формы и масштаба выпуска. Зубья эвольвентных колес изготавливают так, чтобы каждое колесо могло входить в зацепление с колесами того же модуля, имеющими любое число зубьев.
Зубья получают нарезанием или накатыванием.

Нарезание зубьев выполняют одним из двух методов – копированием или обкаткой.

Метод копирования заключается в прорезании впадин между зубьями модульными фрезами (рис. 5): дисковыми (а) или концевыми (б). После прорезания каждой впадины заготовку поворачивают на шаг зацепления. Профиль впадины является копией профиля режущих кромок фрезы, отсюда и название – метод копирования.
Точность нарезаемых зубьев невысокая, метод является малопроизводительным, поэтому его применяют, преимущественно, в ремонтном производстве.

Метод обкатки имеет основное применение. Нарезание зубьев по этому методу основано на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент – червячная фреза (рис. 6,а), долбяк (рис. 6,б) или реечный долбяк – гребенка (рис. 8.).

Червячная фреза имеет в осевом сечении форму инструментальной рейки. При нарезании зубьев заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса.
Нарезание зубьев червячными фрезами широко применяют для изготовления колес с внешним расположением зубьев.
Для нарезания колес с внутренним расположением зубьев применяют долбяки.

Гребенками (см. рис. 8) нарезают прямозубые и косозубые колеса с большим модулем зацепления.
Нарезание зубьев конических колес методом обкатки производят строганием (рис. 7,а), фрезерованием (рис. 7,б), резцовыми головками.

Накатывание зубьев применяют в массовом производстве. Предварительное формообразование зубьев цилиндрических и конических колес производят горячим накатыванием. Венец стальной заготовки нагревают токами высокой частоты (ТВЧ) до 1200 ˚С, а затем обкатывают между колесами-накатниками. При этом на венце выдавливаются зубья. Для получения колес более высокой точности производят последующую механическую обработку зубьев или холодное накатывание – калибровку. Холодное накатывание зубьев применяют при модуле до 1 мм.

Накатывание зубьев – высокопроизводительный метод изготовления колес с минимальным отходом металла в стружку.

Отделка (доводка) зубьев

Зубья колес точных зубчатых передач после нарезания подвергают отделке шевингованием, шлифованием, притиркой или обкаткой.

Шевингование применяют для тонкой обработки незакаленных зубьев.
Выполняют специальным инструментом – шевером, имеющим вид зубчатого колеса с узкими канавками на поверхности зубьев. Вращаясь в зацеплении с обрабатываемым колесом, шевер снимает режущими кромками канавок волосообразную стружку с зубьев колеса, доводя его форму до требуемой точности.

Шлифование применяют для обработки закаленных зубьев. Выполняют шлифовальными кругами способом копирования или обкатки.

Притирку используют для отделки закаленных зубьев колес. Выполняют притиром – чугунным точно изготовленным колесом с использованием притирочных паст.

Обкатку применяют для сглаживания шероховатостей на рабочих поверхностях зубьев незакаленных колес. В течение 1…2 минут зубчатое колесо обкатывают под нагрузкой с эталонным колесом высокой твердости.

Скольжение при взаимодействии зубьев

При работе колес зацепление двух зубьев происходит по рабочим участкам профилей, при этом рабочие участки профилей одновременно перекатываются и скользят друг по другу. Скольжение вызвано тем, что за один и тот же промежуток времени контактируют участки головок большей длины с соответствующими им участками ножек зубьев меньшей длины. Скорость скольжения зубьев в крайних точках зацепления имеет максимальное значение, и равна нулю в полюсе зацепления, при этом при переходе точки зацепления через полюс скорость скольжения меняет знак (рис. 10).

Точки профилей головок зубьев имеют бόльшие касательные скорости, чем точки ножек, следовательно, поверхности головок являются опережающими. Бόльшему изнашиванию подвержена ножка, меньшему – головка, что приводит к искажению профиля зуба, особенно в открытых передачах.

Неравномерное скольжение зубьев является недостатком эвольвентного зацепления. Малые значения скорости скольжения в околополюсной зоне увеличивают коэффициент трения в этой зоне, что создает предпосылки для выкрашивания рабочих поверхностей зубьев в результате контактных напряжений.

Влияние числа зубьев на форму и прочность зуба

Изменение числа зубьев приводит к изменению формы зуба. У рейки с числом зубьев z стремящимся к бесконечности зуб прямобочный (рис. 11,а); с уменьшением количества зубьев увеличивается кривизна эвольвентного профиля, а толщина зуба у основания и вершины уменьшается.

При уменьшении количества зубьев ниже предельного появляется подрез ножки зуба режущей кромкой инструмента (рис. 11, в), в результате чего прочность зуба резко снижается. Из-за среза части эвольвенты у ножки зуба (рис. 12) уменьшается длина рабочего участка профиля, в результате чего понижается коэффициент перекрытия εα и возрастает изнашивание.

Чтобы исключить подрезание ножки зуба при малом z инструментальной рейке необходимо сообщить смещение xm (рис. 13, а), при котором вершина ее зуба выйдет из зацепления с зубом колеса 2 в точке S и эвольвента профиля получится полной, не подрезанной (рис. 13, б). При этом избыточная часть рейки не будет подрезать зуб.

Величину xm называют абсолютным смещением рейки, величину x – относительным смещением рейки, или коэффициентом смещения.

Читать еще:  Резка оргстекла или пластика листового в домашних условиях

Минимальное количество зубьев шестерни, у которой исключено подрезание зубьев без смещения рейки (т. е. при x = ) можно определить по формуле:

При αw = 20˚ минимальное количество зубьев zmin = 17.

С увеличением количества зубьев возрастает коэффициент перекрытия εα , повышается плавность работы передачи, уменьшаются потери на трение и стоимость изготовления колес. Оптимальное количество зубьев колес, используемых в зубчатых передачах и редукторах, принимают равным zmin = 18…35.

Зубчатые передачи со смещением

Передачу со смещением образуют зубчатые колеса, у которых нарезание зубьев осуществляют со смещением рейки на величину xm (рис. 13). Изменение формы зуба по сравнению с исходным зацеплением при нарезании со смещением называют модификацией профиля.
Модифицированный профиль зуба очерчивается другим (смещенным) участком той же эвольвенты, что и профиль немодифицированного зуба.

Модификацию применяют:
— для устранения подрезания зубьев шестерни при малом количестве зубьев;
— для повышения изгибной прочности зубьев, что достигается увеличением их толщины;
— для повышения контактной прочности, что достигается увеличением радиуса кривизны в полюсе зацепления;
— для получения заданного межосевого расстояния передачи.

Положительным называют смещение рейки от центра зубчатого колеса, отрицательным – к центру.
При положительном смещении увеличивается толщина зуба у основания (рис. 14), что повышает его прочность на изгиб, но при этом заостряется головка зуба, что ограничивает величину смещения инструмента при нарезании.
При отрицательном смещении имеет место обратное явление.

У зубчатых колес со смещением толщина зуба и ширина впадины по делительной окружности неодинаковы, но в сумме остаются равными шагу р .

В зависимости от сочетания смещений при нарезании зубьев парных зубчатых колес модификация бывает высотной и угловой.

Высотная модификация

При высотной модификации шестерню изготовляют с положительным коэффициентом смещения, а колесо – с отрицательным, при этом абсолютные величины смещений должны быть равны, в результате чего суммарный коэффициент смещения будет равен нулю. Такие передачи называют равносмещенными.
При высотной модификации зубчатой пары диаметры делительных окружностей шестерни и колеса совпадают, как и в передаче без смещения, следовательно, межосевое расстояние, коэффициент перекрытия и угол зацепления остаются неизменными. Общая высота зубьев также не меняется по сравнению с ее нормальным значением, но изменяется соотношение между высотой головок и ножек зубьев. Поэтому такая модификация и называется высотной.

Высотную модификацию применяют при малом числе зубьев шестерни и большом передаточном числе, когда требуется обеспечить такие формы зубьев шестерни и колеса, при которых они будут примерно равнопрочными на изгиб.

Угловая модификация

Угловая модификация является общим случаем модифицирования, при котором суммарный коэффициент смещения пары колес не равен нулю, т. е. смещение у шестерни и у колеса неодинаковы по абсолютной величине.
Угловая модификация по сравнению с высотной дает значительно бόльшие возможности влиять на различные параметры зацепления (межосевое расстояние, угол зацепления, угол перекрытия и т. п.), поэтому она применяется чаще.

Модифицированные зубчатые колеса изготавливают тем же стандартным инструментом и на том же оборудовании, что и немодифицированные. Для получения нормальной высоты зуба диаметры заготовок соответственно увеличивают или уменьшают на величину удвоенного смещения инструмента.
Иногда модифицированные колеса называют корригированными (устаревшая терминология).

Точность зубчатых передач

При изготовлении зубчатых передач неизбежны погрешности, которые выражаются в радиальном биении зубчатого венца, отклонениях шага, профиля зуба, соосности осей колес, колебании межосевого расстояния и др.
Эти погрешности приводят к повышенному шуму во время работы передачи, потере точности вращения ведомого колеса, нарушению правильности и плавности зацепления, повышению динамичности и снижению равномерности распределения действующей в зацеплении нагрузки по длине контактных линий и, в конечном счете, определяют ресурс и работоспособность передачи.

Тем не менее, выполнять зубчатые передачи со слишком высокой точностью не всегда целесообразно, поскольку это приводит к удорожанию механизма в целом. Поэтому стандартом регламентируется точность зубчатых колес и передач в зависимости от их назначения и условий работы.
Допуски на цилиндрически зубчатые передачи определяются стандартом ГОСТ 1643–81.

Этим стандартом установлено 12 степеней точности зубчатых колёс и передач: 1, 2, 3 … 12 в порядке убывания точности. Для степеней точности 1 и 2 и 12 допуски стандартом не предусмотрены (для перспективы).

Наибольшее распространение имеют 6,7, 8 и 9-я степени точности: 6-я степень соответствует высокоточным скоростным передачам, 7-я – передачам нормальной точности, работающим с повышенными скоростями и умеренными нагрузками или с умеренными скоростями и повышенными нагрузками, 8-я передачам общего машиностроения пониженной точности, 9-я – тихоходным передачам машин низкой точности.

Для каждой степени точности установлены независимые нормы допускаемых отклонений параметров, определяющих:

  • кинематическую точность колёс и передачи (регламентирует погрешность углов поворота зацепляющихся пар колес за один оборот);
  • плавность работы (регламентирует колебания скорости за один оборот колеса, вызывающие шум и динамические нагрузки);
  • контакт зубьев зубчатых колёс в передаче (регламентирует концентрацию нагрузки на зубьях, определяющую работоспособность силовых передач).

Также ГОСТ 1643–81 устанавливает шесть видов сопряжений определяющих гарантированный боковой зазор между неконтактирующими поверхностями смежных зубьев.
Боковой зазор необходим для предотвращения заклинивания зубьев передачи от нагрева, размещения смазочного материала и обеспечения свободного вращения колес.
Размер зазора задают видом сопряжения зубчатых колес в передаче: Н – нулевой зазор, Е –малый зазор, D и С – уменьшенные зазоры, В – нормальный зазор, А – увеличенный зазор.
В общем машиностроении чаще всего применяют вид сопряжения В, а для реверсивных передач – С.
Получение боковых зазоров связано с точностью изготовления колес.

Конструкция зубчатого колеса

Встречается просто огромное количество разновидностей шестерен, все они характеризуются своими определенными особенностями. Среди конструкционных особенностей отметим следующие моменты:

  1. При изготовлении цилиндрических и конических шестерен с прямым зубом рабочая часть создается заодно целое с валом. Это связано с тем, что размеры конструкции существенно уменьшаются. За счет создания такой конструкции можно получить деталь с высокой точностью и износостойкостью.
  2. Встречаются и шестерни насадного типа. Они весьма распространены в случае, когда диаметр рабочей части большой. За счет установки насадного варианта исполнения есть возможность проводить обслуживание конструкции.
  3. При диаметре менее 500 мм изделие получается методом ковки и отливки, а также при применении технологии сварки. Вариант исполнения более 500 мм изготавливаются методов отливки и сварки.
  4. Клепанные или свертные колеса могут устанавливаться в случае, если есть необходимости в экономии используемого материала.

Наибольшее распространение получили зубчатые колеса цилиндрического типа.

Конструктивными особенностями подобного варианта исполнения можно назвать:

  1. В качестве заготовки применяется диск определенной толщины.
  2. В центральной части есть посадочное отверстие с прорезью для шпонки. Как правило, оно имеет достаточно большую кайму.
  3. Рабочая часть представлена зубьями, которые могут быть расположены прямо или под углом. При этом геометрия зуба может существенно отличаться, все зависит от области эксплуатации.
Читать еще:  Виды и типы микрометров и как выбрать

Изготовление цилиндрических зубчатых колес проводится при применении специального оборудования. Примером можно назвать зубонарезные станки, которые работают по методу обкатки. Стоит учитывать, что процесс изготовления конических зубчатых колес существенно отличается.

Классификация

В машиностроении используются зубчатые колеса двух типов:

  • цилиндрические;
  • конические.

У первых профиль зубьев чаще всего имеет эвольвентную боковую форму. Выпускают детали, основанные и на других типах кривых. Например, в храповых механизмах обычно используют колеса с асимметричным сечением зуба.

Конические детали применяются в агрегатах, для работы которых необходимо передавать момент с одного вала на другой, при этом их оси должны пресекаться. Зубчатые колеса этого вида могут иметь следующие виды профилей:

  • прямую;
  • тангенциальную;
  • круговую;
  • криволинейную.

Первые и вторые обычно используются для передач между параллельными валами и являются одними из самых востребованных. Круговые зубчатые колёса знакомы всем автомобилистам, так как обеспечивают работу коробки передач.

Зубчатый венец в Екатеринбурге

Зубчатый венец – это внешняя поверхность зубчатого колеса, он может быть разным по конструкции. Например, зубчатый венец в Екатеринбурге может быть цельным или разъемным, с наружным или внутренним зацеплением. Зубчатый венец в Екатеринбурге также бывает с литыми или обработанными зубьями прямой, косой или шевронной формы.

ООО Корпорация «УралТехОснастка» изготовит зубчатый венец в Екатеринбурге, зубчатое колесо в Екатеринбурге любого типа, размеров и сложности. Зубчатый венец в Екатеринбурге, изготовленный из высококачественных материалов, отличается прочностью, выдерживает существенные ударные и механические нагрузки, может использоваться в самых сложных эксплуатационных условиях.

Зубчатый венец в Екатеринбурге, зубчатое колесо в Екатеринбурге производства ООО Корпорация «УралТехОснастка» — это высококачественные детали в профессиональном исполнении квалифицированных специалистов.

Наша продукция

  • Шестерни косозубые. Это усовершенствованная версия прямозубых шестеренок, которая применяется в устройствах, где необходима передача большого крутящего момента на высоких скоростях.
  • Шестерни с круговым зубом. Процесс изготовления таких шестеренок гораздо сложнее, но они обладают улучшенными ходовыми характеристиками.
  • Шестерни с питчевым модулем. Питчевое зубчатое колесо в основном используется в полиграфических машинах и оборудовании для пищевого производства.
  • Конические зубчатые колеса. Изготовление конических зубчатых колес осуществляется методом копирования (деления) и методом обкатки. Необходимые размеры для заказа данного вида червячных колес необходимо указывать в чертежах.
  • Цилиндрические прямозубые — самый популярный вид зубчатых колес. Линия контакта зубьев шестерен параллельна оси вращения, а зубья продолжают радиусы. Важное требование – оси колес параллельны друг другу.
  • Шевронные колеса – помогут решить проблему осевой силы. Зубья состыковываются встречным образом и имеют форму в виде буквы V. Взаимная компенсация обеих частей такого колеса — дополнительное преимущество. Кроме того, это самоустанавливающаяся передача в осевом направлении.
  • Червячные зубчатые колеса.
  • И другие виды шестерен.

Решения Okuma в области зубообработки

Наиболее распространенным типом механических передач в машиностроении являются зубчатые передачи. Зубчатые колеса находят свое применение практически во всех областях машиностроения: станко-, судо-, автомобилестроении, производстве сельскохозяйственной техники, а также в приборостроении и часовой индустрии. В зависимости от области применения отличаются и тип, и точность изготовления, и размеры зубчатых колес — с диаметром от долей миллиметра в приборостроении, до 12-18 метров в судостроении и горнодобывающем оборудовании.

Наряду с многочисленными преимуществами зубчатых зацеплений традиционно как основной недостаток выделяют сложность в изготовлении зубчатых колес. Далее мы поведем разговор в основном о способах обработки зубчатых колес с эвольвентным профилем как наиболее распространенного типа зубчатых колес. Классическая технология изготовления зубчатого колеса или вал-шестерни включает токарные, фрезерные, протяжные, зубофрезерную или зубодолбежную операции, а также операции зубошевингования и зубозакругления, термообработку, зубошлифовальние. Это сложный процесс, в котором задействовано различное оборудование. Необходимость в специальном зубообрабатывающем оборудование, часто заставляет предприятия выносить зубообработку на внешнюю кооперацию. В статье мы представим те решения, которые компания «Пумори-инжиниринг-инвест» может предложить для изготовления зубчатых колес в условиях как единичного, так и серийного производства.

Обработка червячными фрезами – зубофрезерование

На современном производстве токарные и фрезерные работы сконцентрированы на токарных станках с приводным инструментом или на многофункциональных токарно-фрезерных обрабатывающих центрах. С целью обеспечения более гибкого производства с широкими технологическими возможностями и сокращения инвестиций в специальное оборудование компания Okuma предлагает серию токарно-фрезерных обрабатывающих центров Multus c опцией Hobbing Cutting для нарезания зубчатых венцов и шлицев червячными фрезами методом обкатки. Данный метод является наиболее распространенным и производительным для обработки зубчатых колес в серийном производстве – как прямозубых, так и косозубых. На рисунке 1 схематически показан принцип данного метода. На обрабатывающих центрах серии Multus данный метод реализован благодаря кинематике с пятью управляемыми осями (наклонная ось «В», управляемая ось «С», линейные оси X, Y и Z c широким диапазоном перемещений) и системе ЧПУ (обеспечивает согласование вращения фрезы и заготовки).

На рисунке 2 показана реализация данного метода на обрабатывающем центре Okuma серии Multus. На нем эффективно обрабатываются зубчатые колеса с модулем до 5,5 мм (прим. рисунке 2 обрабатывается зубчатый венец с модулем 3 мм – это рекомендуемый модуль для модели Multus U4000 в условиях серийного производства).

Данный метод обработки может быть реализован не только на токарно-фрезерных центрах серии Multus, но и на токарных станках револьверного типа LB-серии с приводным инструментом. В револьверную голову устанавливается специальная приводная головка, (например, фирмы SU matik, рис.3), которая обеспечивает надежное и жесткое двуопорное закрепление фрезы. На рисунке 4 изображены заготовка и готовая деталь, обработанные на станке LB3000. Модуль зубчатого венца равен 2,5 мм.

Отметим ключевые преимущества, получаемые при использовании данного метода на станках Okuma:

  • Точная обработка сложных деталей за один установ, включая токарную, фрезерную обработку и зубообработку с использованием всех возможностей станка: поддержка длинных деталей задним центром или обработка в противошпинделе;
  • Экономия площадей под оборудование;
  • Отсутствие межоперационных простоев;
  • Отсутствие необходимости инвестировать в специальное оборудование для зубообработки, которое может не быть загружено должным образом.
Читать еще:  Простые способы проверки симисторов и тиристоров

Зуботочение или Power Skiving

Данный метод обработки зубчатых колес был разработан в начале ХХ века и запатентован в 1910 году Вильгельмом фон Питтлером. В его основе лежит использование специального многозубого инструмента в форме чашки, перекрещивание под углом в пространстве осей детали и инструмента (рис. 5) и синхронное вращение детали и заготовки на большой скорости. Таким образом, согласованное вращение и угловое расположение заготовки и инструмента обеспечивает относительное движение инструмента и заготовки, которое формирует впадину между зубьями детали, и в дополнении с направлением осевой подачи заготовки формируется зубчатый венец. Данный метод, разработанный в начале прошлого века, «ждал» оборудования, способного реализовать и раскрыть его потенциал. Компания Okuma готова предложить своим клиентам такое оборудование.

Использование метода в комплексе с токарной и фрезерной обработкой даст производителю ряд преимуществ как технического, так и экономического характера. На рисунке 6 изображен фрагмент обработки зубчатого венца методом зуботочения на обрабатывающем центре Okuma Multus U4000.

В сравнении с таким методом обработки зубчатых колес как зубодолбление метод скайвинга имеет значительные преимущества:

  • Современный инструмент для зуботочения оснащен сменными твердосплавными пластинами и способен работать на скоростях до 300 м/мин;
  • Благодаря более эффективному процессу стружкообразования обеспечивается увеличение производительности до восьми раз.

В сравнении с методом зубофрезерования (Hobbing) метод скайвинга также имеет ряд преимуществ:

  • Возможность обработки внутреннего зубчатого венца и малые величины врезания и перебега, которые в случае использования червячно-модульной фрезы могут быть соизмеримы с диаметром фрезы;
  • Все эти преимущества можно получить с использованием на производстве обрабатывающих центров серии Okuma Multus U.

Invomilling™

Данная технология разработана компанией Sandvik Coromant. Главные отличительные черты этой технологии – гибкость и универсальность. С точки зрения кинематики данный метод относится к методам огибания с тем лишь отличием, что имитируется не зацепление, а инструмент «обкатывает» каждую впадину зубчатого колеса за счет возможности непрерывной обработки на токарно-фрезерном 5-осевом центре (рис. 7).

Компания Sandvik предлагает универсальный инструмент – фрезы серий CoroMill 161 и CoroMill 162 для обработки наружных зубчатых колес различной формы и модуля (рис.8). Простота наладки и программирования, малая номенклатура инструмента и возможность с малыми нагрузками произвести обработку зуба с модулем до 12 мм делает данный метод идеальным решением для мелкосерийного или единичного производства. Метод Invomilling может быть с высокой эффективностью реализован на токарно-фрезерных обрабатывающих центрах Okuma Multus U.

Помимо описанных выше методов обработки зубчатых колес на станках Okuma может быть осуществлена обработка фасонным инструментом (например, дисковыми фасонными фрезами серии CoroMill 171, рис. 9) – т.е. методом копирования. Для обработки конического колеса с круговым зубом может быть использован полноценный 5-осевой обрабатывающий центр серии MU. Геометрия впадины будет получена стандартным инструментом за счет программирования ЧПУ, или же может быть применена специальная резцовая головка для обработки конического зуба (рис. 10).

В заключении выделим те преимущества, которые могут быть получены при комплексной обработке на станках Okuma вне зависимости от выбранного метода;

  • Повышение точности детали за счет выполнения обработки за один установ;
  • Сокращение машинного времени за счет использования высокопроизводительной технологии обработки;
  • Сокращение времени межоперационных простоев, за счет комплексной обработки на одном станке за один или два установа;
  • Сокращение используемых площадей;
  • Сокращении числа основных рабочих;
  • Сокращении инвестиций на приобретение специального оборудования.
Сравнение комплексной и классической технологии

Компания «Пумори-инжиниринг-инвест» готова стать вашим надежным партнером в поставке оборудования для комплексной обработки зубчатых колес.

Автор: Антон Шмальц, инженер-технолог «Пумори-инжиниринг инвест»

Метод копирования зубчатых колес

При применении метода копирования, все впадины между зубьями на изделии обрабатываются с помощью инструмента. Инструмент имеет форму, которая полностью идентична профилю выемки колёса. В качестве инструмента используют пальцевые или фасонные дисковые фрезы. Обработка производится на фрезерном станке с использованием делительных головок.

Процесс получения зуба точного профиля при обработке всех зубчатых колёс с необходимым количеством зубьев и модулей, подразумевает использование специальной фрезы. Этот процесс требует некоторого количества фрез, в связи с этим применяют наборы из восьми фасонных фрез дискового типа для каждого блока зубьев. Для обработки более точного класса используют набор, состоящий из 26 либо 15 фрез.

Все фрезы набора применяются для производства зубчатого колёса с определённым числом зубьев в заданных пределах. Размеры фрезы рассчитывают по минимальному количеству зубьев интервала, в связи с этим при имеющемся большем числе зубьев, фреза срежет остаточный материал. При расчёте по среднему количеству зубьев имеющегося интервала, происходит заклинивание колес, так как меньший диаметр зубьев получится более толстого диаметра.

Способ нарезания зубчатых механизмов пальцевыми, фасонными дисковыми фрезами достаточно неточен и обладает малой производительностью. Метод используют довольно редко, как правило, при черновых операциях.

Конические и цилиндрические зубчатые колеса

Конические и цилиндрические зубчатые колеса изготавливаются различными способами, конические – обкаткой, а цилиндрические копированием и огибанием.

Корпорация «Союз оснастка» изготавливает по чертежам и техническому заданию заказчика: зубчатые колеса, валы различных типов, звездочки и т.д., кроме того разрабатывают чертежи по тех. заданию Заказчика. Осуществляют механическую обработку и производство, термообработку, ремонт и сервис деталей и изделий в соответствии с техническим заданием Заказчика.

Шестерня с круговым зубом (коническая шестерня) применяются для изготовления различных механизмов и машин.

Шестеренка — это зубчатое колесо на канонической или цилиндрической поверхности.

Червячная пара состоит из двух элементов: червячного колеса (зубчатое колесо) и червяка (винт с «резьбой»).

Корпорация «Союз оснастка» осуществляет механическую обработку износившихся крупногабаритных шестерен до 30 модуля.

Мы изготавливаем шестерни различной сложности, в том числе по чертежам заказчика.

Специфика изготовления зубчатых колес

Промышленное производство зубчатых колес выполняется различными способами. Наиболее распространенной технологией изготовления служит метод обкатки. Данная операция заключается во взаимодействии вращающейся заготовки и инструмента. Зубья нарезаются на металлической детали за счет возвратно-поступательного движения гребенки. Помимо обкатки, зубчатые колеса изготавливают:

  • делением – зубья нарезаются на теле заготовки с помощью фрезерного оборудования;
  • копированием – в промышленной металлообработке данный способ изготовления не применяется из-за низких показателей эффективности;
  • накатыванием – заготовка нагревается и обрабатывается зубонакатным инструментом, в результате чего зубья обретают необходимую форму, подобная технология позволяет изготавливать шестерни высокой точности.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector